
A PYTHON/C++ LIBRARY FOR

BOUND-CONSTRAINED GLOBAL OPTIMIZATION

USING BIASED RANDOM-KEY GENETIC ALGORITHM

R. M. A. SILVA, M. G. C. RESENDE, AND P. M. PARDALOS

Abstract. This paper describes libbrkga, a GNU-style dynamic shared Py-
thon/C++ library of the biased random-key genetic algorithm (BRKGA) for
bound constrained global optimization. BRKGA (Gonçalves and Resende,
2011) is a general search metaheuristic for finding optimal or near-optimal
solutions to hard optimization problems. It is derived from the random-key
genetic algorithm of Bean (1994), differing in the way solutions are combined
to produce offspring. After a brief introduction to BRKGA, we show how
to download, install, configure, and use the library through an illustrative
example.

1. Introduction

The objective of global optimization is to find a minimum or maximum of a
multimodal function over a discrete or continuous domain. In its minimization form,
global optimization is stated mathematically as finding a solution x∗ ∈ S ⊆ R

n such
that f(x∗) ≤ f(x), ∀ x ∈ S, where S is some region of Rn and the multimodal
objective function f is defined by f : S → R. Such a solution x∗ is called a global
minimum. In this paper, we limit ourselves to box constraints, i.e. the domain S
is a hyper-rectangle S = {x = (x1, . . . , xn) ∈ R

n : ℓ ≤ x ≤ u}, where ℓ, u ∈ R
n such

that ℓ ≤ u. Therefore, the minimization problem considered in this paper consists
in finding x∗ = argmin{f(x) | ℓ ≤ x ≤ u}, where f : Rn → R, and ℓ, x, u ∈ R

n.
Biased random-key genetic algorithm (BRKGA) is a general search metaheuris-

tic for finding optimal or near-optimal solutions of hard optimization problems
(Gonçalves and Resende, 2011). It is derived from the random-key genetic al-
gorithm of Bean (1994), differing in the way solutions are combined to produce
offspring. BRKGAs have three key features that specialize genetic algorithms:

• A fixed chromosome enconding using a vector of n random keys or alleles
over the internal [0, 1], where the value of n depends on the instance of the
optimization problem;
• A well-defined evolutionary process adopting parameterized uniform crossover
(Spears and DeJong, 1991) to generate offspring and thus evolve the pop-
ulation;
• The introduction of new chromosomes called mutants in place of the mu-
tation operator usually found in genetic algorithms.

Key words and phrases. Biased random-key genetic algorithm, Global optimization, multi-
modal functions, continuous optimization, heuristic, stochastic algorithm, stochastic local search,
nonlinear programming.

1

2 R. M. A. SILVA, M. G. C. RESENDE, AND P. M. PARDALOS

In this paper, we describe the BRKGA library libbrkga, a GNU-style dynamic
shared Python/C++ library of the biased random-key genetic algorithm. The
library was developed using the autoconf, automake, and libtool packages (Cal-
cote, 2010), as well as part of C++ application programming interface for BRKGA
developed by Toso and Resende (2012).

The library libbrkga is implemented as an embedded Python-in-C code (van
Rossum and Drake Jr., 2010a;b) to take advantage of the simplicity offered by
the Python programming language in implementing complex multimodal functions.
Besides having access to the extensive standard library of Python, any non-standard
module or library, such as SymPy (SymPy, 2011), can be used to implement a
function. An important feature of our library is that the functions implemented in
Python are loaded automatically without the need to recompile any code.

The paper is organized as follows. The BRKGA heuristic is reviewed in Section 2
and 3. Section 4 shows how to download, install, configure, and use libbrkga.
An illustrative example is given in Section 5. Concluding remarks are made in
Section 6.

2. Biased random-key genetic algorithms

Genetic algorithms with random keys, or random-key genetic algorithms (RKGA),
were first introduced by Bean (1994) for solving combinatorial optimization prob-
lems involving sequencing. In a RKGA, chromosomes are represented as vectors of
randomly generated real numbers in the interval [0, 1]. A deterministic algorithm,
called a decoder, takes as input a solution vector and associates with it a solution
of the combinatorial optimization problem for which an objective value or fitness
can be computed.

A RKGA evolves a population of random-key vectors over a number of iterations,
called generations. The initial population is made up of p vectors of random-keys.
Each component of the solution vector is generated independently at random in the
real interval [0, 1]. After the fitness of each individual is computed by the decoder
in generation k, the population is partitioned into two groups of individuals: a
small group of pe elite individuals, i.e. those with the best fitness values, and the
remaining set of p− pe > pe non-elite individuals. To evolve the population, a new
generation of individuals must be produced. All elite individuals of the population
of generation k are copied without modification to the population of generation
k + 1. RKGAs implement mutation by introducing mutants into the population.
A mutant is simply a vector of random keys generated in the same way that an
element of the initial population is generated. At each generation, a small number
(pm) of mutants is introduced into the population. With the pe elite individuals
and the pm mutants accounted for in population k + 1, p − pe − pm additional
individuals need to be produced to complete the p individuals that make up the
new population. This is done by producing p−pe−pm offspring through the process
of mating or crossover.

Figure 1 illustrates the evolution dynamics. On the left of the figure is the
current population. After all individuals are sorted by their fitness values, the best
fit are placed in the elite partition labeled ELITE and the remaining individuals
are placed in the partition labeled NON-ELITE. The elite random-key vectors are
copied without change to the partition labeled TOP in the next population (on the
right side of the figure). A number of mutant individuals are randomly generated

THE LIBBRKGA BRKGA LIBRARY 3

Figure 1. Transition from generation k to generation k + 1 in a BRKGA.

and placed in the new population in the partition labeled BOT. The remainder of
the population of the next generation is completed by crossover. In a RKGA, Bean
(1994) selects two parents at random from the entire population. A biased random-
key genetic algorithm, or BRKGA (Gonçalves and Almeida, 2002; Ericsson et al.,
2002; Gonçalves and Resende, 2004), differs from a RKGA in the way parents are
selected for mating. In a BRKGA, each element is generated combining one element
selected at random from the partition labeled ELITE in the current population and
one from the partition labeled NON-ELITE. In some implementations, the second
parent has been selected from the entire population. Repetition in the selection of
a mate is allowed and therefore an individual can produce more than one offspring.
Since we require that pe < p−pe, the probability that an elite individual is selected
for mating is greater than that of a non-elite individual and therefore the elite
individual has a higher likelihood to pass on its characteristics to future generations.
Another factor contributing to this end is parameterized uniform crossover (Spears
and DeJong, 1991), the mechanism used to implement mating in BRKGAs. Let
ρe > 0.5 be the probability that an offspring inherits the vector component of its
elite parent. Let n denote the number of components in the solution vector of an
individual. For i = 1, . . . , n, the i-th component c(i) of the offspring c takes on the
value of the i-th component e(i) of the elite parent e with probability ρe and the
value of the i-th component ē(i) of the non-elite parent ē with probability 1− ρe.

Figure 2 illustrates the crossover process for two random-key vectors with four
components each. Chromosome 1 refers to the elite individual and Chromosome 2
to the non-elite one. In this example the value of ρe = 0.7, i.e. the offspring inherits
the component of the elite parent with probability 0.7 and of the other parent with
probability 0.3. A randomly generated real in the interval [0, 1] simulates the toss
of a biased coin. If the outcome is less than or equal to 0.7, then the child inherits
the component of the elite parent. Otherwise, it inherits the component of the
other parent.

When the next population is complete, i.e. when it has p individuals, fitness
values are computed for all of the newly created random-key vectors and the pop-
ulation is partitioned into elite and non-elite individuals to start a new generation.

4 R. M. A. SILVA, M. G. C. RESENDE, AND P. M. PARDALOS

Figure 2. parameterized uniform crossover: mating in BRKGAs.

BRKGA heuristics are based on a general-purpose metaheuristic framework. In
this framework, depicted in Figure 3, there is a clear divide between the problem-
independent portion of the algorithm and the problem-dependent part. The problem-
independent portion has no knowledge of the problem being solved. The only con-
nection to the optimization problem being solved is the problem-dependent portion
of the algorithm, where the decoder produces solutions from the vectors of random-
keys and computes the fitness of these solutions. Therefore, to specify a BRKGA
heuristic one need only define its chromosome representation and the decoder.

Figure 3. Flowchart of a BRKGA

A BRKGA for bound-constrained global optimization was proposed by Silva
et al. (2012). To describe this BRKGA, one needs only to show how solutions are
encoded as vectors of random keys and how these vectors are decoded to feasible
solutions of the problem:

• Encoding a solution to a vector of random keys. A solution is encoded as
a vector χ = (χ1, ..., χn) of size n, where χi is a random number in the

THE LIBBRKGA BRKGA LIBRARY 5

interval [0, 1], for i = 1, . . . , n. The i-th component of χ corresponds to the
i-th dimension of hyper-rectangle S.
• Decoding a solution from a vector of random keys. First, the decoder takes
as input the vector of random keys χ and generates a solution x ∈ S with
xi = li+χi · (ui− li), for i = 1, . . . , n. After, the decoder proceed by trying
to improve x using the local search described in the next section. The new
solutions x = (x1, . . . , xn) produced by the local search usually disagree
with the genes initially supplied in the vector of random keys to the decoder.
In these cases, in order to reflect the changes made by the local search
phase of the decoder, the components of the chromosomes are updated
with the following values χi = (xi − li)/(ui − li), for i = 1, . . . , n. During
all decoder process, the solutions fitness are calculated by the objective
function f : S → R of the global optimization problem.

3. Local improvement procedure

Inspired by the local search introduced in Hirsch et al. (2007; 2010), our local
improvement phase (with pseudo-code shown in Figure 4) can be seen as approxi-
mating the role of the gradient of the objective function f(·). From a given input
point x ∈ R

n, the local improvement algorithm generates a neighborhood, and
determines at which points in the neighborhood, if any, the objective function im-
proves. If an improving point is found, it is made the current point and the local
search continues from the new solution.

Let x̄ ∈ R
n be the current solution and h be the current grid discretization

parameter. Define Sh(x̄) = {x ∈ S | ℓ ≤ x ≤ u, x = x̄ + τ · h, τ ∈ Zn}
to be the set of points in S that are integer steps (of size h) away from x̄. Let
Bh(x̄) = {x ∈ S | x = x̄+ h · (x′ − x̄)/‖x′− x̄‖, x′ ∈ Sh(x̄) \ {x̄}} be the projection
of the points in Sh(x̄) \ {x̄} onto the hyper-sphere centered at x̄ of radius h. The
h-neighborhood of the point x̄ is defined as the set of points in Bh(x̄).

The procedure takes as input a starting solution x ∈ S ⊆ R
n, the objective

function f(·), lower and upper bound vectors ℓ and u, as well as the parameters
hs and he, the starting and ending grid discretization densities, respectively. The
maximum number of points MaxPointsToExamine ≤

∏
n

i=1⌈(ui − ℓi)/h⌉ in Bh(x
∗)

that are to be examined is also taken as an input parameter. If all of these points
are examined and no improving point is found, the current solution x∗ is considered
an h-local minimum.

The current best local improvement solution x∗ is initialized to x in line 1. In
line 2, the objective function value f∗ of the best solution found is initialized to
f(x). Next, the parameter h, that controls the discretization density of the search
space, is initialized to hs in line 3, and in line 4 the variable Impr is set to false.
Starting at the point x∗, in the loop in lines 7–16, the algorithm randomly selects
points in Bh(x

∗) (line 8), one at a time. In line 9, if the current point x selected
from Bh(x

∗) is feasible and is better than x∗, then x∗ is set to x (line 10), f∗ is set
to f(x) (line 11), NumPointsExamined is set to zero (line 12), Impr is set to true
(line 13), and the loop in lines 7–16 restarts with x∗ as the starting solution. In
line 17, if the variable Impr is still set to false, then in line 20 the grid density is
increased by halving h, and the loop in lines 7–16 is re-initialized if h ≥ he. Local
improvement is terminated if an h-local minimum solution x∗ is found. At that
point, x∗ is returned from the local improvement procedure in line 18 or 23.

6 R. M. A. SILVA, M. G. C. RESENDE, AND P. M. PARDALOS

procedure LocalImprovement(x, f(·), hs, he, ℓ, u, MaxPointsToExamine)
1 x∗ ← x;
2 f∗ ← f(x);
3 h← hs;
4 Impr← false;
5 while h ≥ he do
6 NumPointsExamined← 0;
7 while NumPointsExamined≤ MaxPointsToExamine do
8 x← RandomlySelectElement(Bh(x

∗));
9 if ℓ ≤ x ≤ u and f(x) < f∗ then
10 x∗ ← x;
11 f∗ ← f(x);
12 NumPointsExamined← 0;
13 Impr← true;
14 end if
15 NumPointsExamined← NumPointsExamined+ 1;
16 end while
17 if Impr = true then
18 return x∗;
19 else
20 h← h/2;
21 end if
22 end while
23 return x∗;
end LocalImprovement;

Figure 4. Pseudo-code for local improvement phase.

4. The library

This section begins by showing how to download (Section 4.2), build (Sec-
tion 4.3), and install (Section 4.4) the libbrkga library, as well as its package
dependencies (Section 4.1). Then, the format of components required to use the
library are presented as follows: function module (Section 4.5), parameter input
file (Section 4.6), and calling C++ program (Section 4.7). Finally, the format of
the output file is described in Section 4.8.

4.1. Dependencies. The libbrkga library requires that the following packages
be installed:

• Python programming language package (version ≥ 2.7), available at http:
//www.python.org/download;
• GNU Libtool library, available at http://www.gnu.org/software/libtool/.

4.2. Downloads. Full distribution of the libbrkga library is available at http:

//www.research.att.com/~mgcr/src/libbrkga. The package is distributed as
the tar file brkga-0.0.1.tar.gz containing the following directory structure:

.:

AUTHORS configure INSTALL NEWS src

ChangeLog COPYING Makefile README THANKS

THE LIBBRKGA BRKGA LIBRARY 7

./src:

brkgagopt.cpp GoptDecoder.h mt19937ar.c Makefile

brkgagoptparser.py BRKGA.h mt19937ar.h

Each file of this directory is described in Table 1.

Table 1. Main source code files of the libbrkga library

files description

brkgagopt.cpp Embedded Python-in-C++ code of BRKGA
BRKGA.h C++ header file of brkgagopt.cpp
mt19937ar.c C source code of the Mersenne Twister random number

generator of Matsumoto and Nishimura (1998)
mt19937ar.h C header file of mt19937ar.c
GoptDecoder.h C++ header file of BRKGA’s decoder
brkgagoptparser.py Parser for parameter input file
AUTHORS Names and e-mail addresses of the authors
ChangeLog Records the changes that are made to package
configure Script that configures the package automatically
COPYING GNU General Public License
INSTALL Instructions for installing a GNU package
Makefile File which make will read to build the library
NEWS A record of user-visible changes to the package
README Purpose of package and installation instructions
THANKS Thanks to contributors

4.3. Building. The libbrkga library was designed to run on a Linux platform.
Building the library from a distribution source tarball does not require autoconf

and automake packages to be installed. To build the library, execute the following
steps:

(1) unzip and untar the distribution brkga-0.0.1.tar.gz source tarball:

$ tar -xvf brkga-0.0.1.tar.gz

(2) Run the configure script to create the Makefiles:

$ cd brkga-0.0.1

$./configure

(3) Run the top-level Makefile:

$ make

The configure command invokes a shell script that is distributed with the
package that automatically configures the library. It first probes the target system
to determine parameters needed to generate a Makefile from a template stored in
the file Makefile.am. When invoked, make executes the Makefile which compiles
the source code of the package but does not install it.

8 R. M. A. SILVA, M. G. C. RESENDE, AND P. M. PARDALOS

4.4. Installation. To install the library, make is once again invoked, this time with
the target install:

$ make install

Note that to install the library in some system directories, such as /usr/local,
requires super-user privilege. During installation, the files are placed in specific
directories, as follows:

• /usr/local/lib directory receives the libraries:

libbrkga.a libbrkga.la libbrkga.so

libbrkga.so.0 libbrkga.so.0.0.0

• /usr/local/include, the header files:

BRKGA.h mt19937ar.h GoptDecoder.h

• /usr/local/lib/python2.7/site-packages/brkga, the Python script:

brkgagoptparser.py

The /usr/local directory is called the prefix. The default prefix is always
/usr/local but this can be set to any other directory when configure is invoked
by adding a --prefix option. For example, suppose a user wants to install the
package in directory /home/username instead of /usr/local:

$./configure --prefix=/home/username

$ make

$ make install

The --prefix argument tells configure where you want to install your package,
and configure will take that into account and build the proper Makefile auto-
matically.

4.5. Function module implementation. Objective functions are implemented
using the Python language. Consider as an example the Ackley function (Ackley,
1987; Bäck, 1996),

(1) An(x) = −20e−0.2
√

1

n

∑
n

i=1
x2

i − e
1

n

∑
n

i=1
cos(2πxi) + 20 + e,

which can be implemented in Python as follows:

from math import *

def f(x):

sum1 = sum(x[i]**2 for i in range(len(x)))

sum2 = sum(cos(2*pi*x[i]) for i in range(len(x)))

r = 1.0/len(x)

return -20.0*exp(-0.2*sqrt(r*sum1))-exp(r*sum2)+20.0+e

In Python, the keyword def introduces a function definition. It must be fol-
lowed by the function name and the parenthesized list of formal parameters. The
statements that form the body of the function start at the next line, and must be
indented. At the end, a return statement returns a value. Therefore, in the above
example, f is the name of the function, array x its parameter, and its body has
four statements.

Python has a way to put definitions and statements in a file and use them in
a script or in an interactive instance of the interpreter. Such a file is called a
module and definitions from a module can be imported into other modules. For
example, the first line from math import * above imports all the definitions from

THE LIBBRKGA BRKGA LIBRARY 9

the standard Python module math to the user’s module ackley. The file name is
the module name with suffix .py appended (e.g. ackley.py).

4.6. Input file formats. The input file must contain the following entries:

• -n <n>: sets the number of alleles per chromosome (parameter n) to the
positive integer value <n>;
• -p <n>: sets the number of chromosomes in population (parameter p) to
the positive integer value <n>;
• -pe <n>: sets the size of the elite set in population (parameter pe) to the
positive integer value <n>;
• -pm <n>: sets the number of mutants to be introduced in population at
each generation (parameter pm) to the positive integer value <n>;
• -rho <n>: sets the probability that an allele is inherited from the elite
parent (parameter ρe) to the real number 0 ≤ <d> ≤ 1;
• -md <module-name>: defines the name of the python module containing
the multimodal function(s) to be minimized;
• -ft <function-name>: defines the name of the Python function that im-
plements the multimodal function to be minimized;
• -ds <n>: sets the function dimension to the positive integer <n>;
• -dm <l> <u> [list-of-exceptions]: sets bounds of the hyper-rectangle
S = {x = (x1, . . . , xn) ∈ R

n : ℓ ≤ x ≤ u}, such that ℓi = <l> and ui =
<u> for all (i = 1, . . . , n) dimensions. For example, -dm -10 10 sets the
lower and upper bounds for all dimensions to −10 and 10, respectively;
Exceptions are used to specify bounds for dimensions for which bounds are
different from <l> or <u>. They are expressed as follows:
(1) <i> <lo> <up>, with 1 ≤ <i> ≤ n and <lo> ≤ <up>: sets the lower ℓi

and upper ui bounds of i-th dimension to <lo> and <up>, respectively.
For example, the exception 3 -12 20 sets the lower and upper bounds
of the third dimension to −12 and 20, respectively.

(2) <i>:<j> <lo> <up>, with 1 ≤ <i> ≤ <j> ≤ n and <lo> ≤ <up>: sets
the lower bounds ℓk to <lo>, and the upper bounds uk to <up>, for
all dimensions k = i, . . . , j. For example, exception 7:10 -13 17 sets
the lower and upper bounds of 7th to the 10th dimensions to −13 and
17, respectively;

(3) combinations between formats (1) and (2) above described. For ex-
ample, 2 1 15 4:6 -9 -3 7 -15 30 9:11 -5 5 sets ℓ2 = 1 and
u2 = 15; ℓ4 = ℓ5 = ℓ6 = −9 and u4 = u5 = u6 = −3; ℓ7 = −15
and u7 = 30; ℓ9 = ℓ10 = ℓ11 = −5, u9 = u10 = u11 = 5;

• -ov <d> or -it <n> or -fe <n>: sets the target optimal objective function
value to the real number <d> or sets the number of iterations to the positive
integer value <n> or sets the number of function evaluations to the positive
integer value <n>. Note that only one of the three entries can be used as
the stopping criterion, i.e. they cannot be used in pairs or all together; Fur-
thermore, option -ov <d> is only used when the optimal objective function
value is known a priori. Otherwise, option -it <n> or option -fe <n> is
used.
• -ep <d>: sets parameter ǫ to the positive real number <d>; Note that this
entry can only be used in conjunction with -ov <d>.

10 R. M. A. SILVA, M. G. C. RESENDE, AND P. M. PARDALOS

• -sd <n>: sets the seed of the pseudo-random generator to the positive
integer <n>;
• -hs <d>: sets the starting grid discretization density hs to the positive real
number <d> (this number could be, for example, 0.1 · min{ui − li : i =
1, . . . , n}) ;
• -he <d>: sets the ending grid discretization density he to the positive real
number <d> (this number must be smaller than the one set by -hs <d> and
in case -ep <d> is used it should be no larger than the parameter set by
-ep <d>);
• -mp <n>: sets the parameter MaxPointsToExamine in the local improve-
ment procedure to the positive integer <n>;
• -of <file-name>: defines the name of the output file to which the solution
is written.

An example input file is:

-n 5 -p 100 -pe 30 -pm 20 -rho 0.7 -sd 270001

-hs 0.5 -he 0.0001 -mp 100 -of output.file

-md ackley -ft f -ds 5 -ov 0 -ep 0.0001

-dm -10 10 1 -5 3 4:5 -13 7

This input file specifies that BRKGA will try to find a solution x′ ∈ S = {x =
(x1, . . . , x5) ∈ R

5 : (−5,−10,−10,−13,−13) ≤ x ≤ (3, 10, 10, 7, 7)}, such that
function f of module ackley.py that implements A5 (Equation 1) will be such
that GAP = |A5(x

′) − 0| ≤ ǫ = 0.0001, using the following parameters: n = 5,
p = 100, pe = 30, pm = 20, ρe = 0.7, hs = 0.5, he = 0.0001, seed = 270001, and
MaxPointsToExamine= 100.

The program that parses this input file format was developed with Pyparsing
(McGuire, 2007).

4.7. Using the library in C++. To use the function double brkga(int, **char)

of the libbrkga library in a C++ program (which we shall call here userprog.cpp):

(1) Put #include <brkga> in the source code of the C++ program userprog.cpp:

#include <brkga>

...

using namespace std;

void main(int argc, char **argv){

...

double x;

x = brkga(argc,argv);

...

}

(2) Link userprog.cpp with the libbrkga library at compilation time, recall-
ing to specify the <pathname> of the Python.h header file:

$ g++ -I<pathname> userprog.c -o userprog -lbrkga

To support embedding, the Python Application Programming Interface (API)
defines a set of functions, macros, and variables that provide access to most aspects

THE LIBBRKGA BRKGA LIBRARY 11

of the Python run-time system. The Python API is incorporated in a C++ source
file by including the header Python.h.

Before running the program, the environment variables LD LIBRARY PATH and
PYTHONPATHmust be set appropriately. LD LIBRARY PATH contains a colon-separated
list of directories in which the dynamic linker should search for shared objects.
Therefore, to inform the dynamic linker where the Python API is installed (more
specifically where the Python.h header file is located), LD LIBRARY PATH must be
set with the Python libraries directory pathname:

$ export LD_LIBRARY_PATH=<python-libs-dir>

For example:

$ export LD_LIBRARY_PATH=/usr/local/lib

PYTHONPATH also contains a colon-separated list of directories, similar to PATH

in so far as it defines a search path. However, unlike PATH (which specifies to the
operating system in which directories to look for executable files), PYTHONPATH is
used by the Python interpreter to locate modules to import. Therefore, the location
of the Python modules that implement the multimodal functions to be minimized
must be specified in PYTHONPATH:

$ export PYTHONPATH=<python-modules-dirs>

For example, the command:

$ export PYTHONPATH=$PWD:/usr/local/lib/python2.7/site-packages/brkga

sets PYTHONPATH to the current directory $PWD, to specify the directory of the func-
tion module and /usr/local/lib/python2.7/site-packages/brkga to specify
the directory of the BRKGA input parser brkgagoptparser.

Finally, to run the program, type:

$ <program_name> <input_file_name>

as for example:

$./userprog input

4.8. Output. The program produces three kinds of output:

• STDERR (terminal): occasional error messages;
• STDOUT (terminal, unless redirected to a file with >) and FILE (file name
specified by the “-of” option in the input file):
(1) For each objective function improvement, a line is printed with the

following format:

<keyword> <value>

Keywords are self-descriptive:
– time: CPU time (in seconds) of improvement;
– best value: objective function value of improved solution;
– chromosome: values of alleles from chromosome responsible for

the improved solution;
– solution: improved solution x = (x1, . . . , xn) ∈ S ⊂ R

n.
(2) Total CPU time (in seconds) in the following format:

time: <value>

For example:
time: 165.650009

12 R. M. A. SILVA, M. G. C. RESENDE, AND P. M. PARDALOS

(3) Value of the overall best solution found in the following format:
optimum: <value>

For example:
optimum: 0.000000

(4) Overall best solution found in the following format:
solution: <value>

For example:
solution: 1.042637 3.074020

Consider as an example the output generated by BRKGA to find a solution
x ∈ [−10, 10]2, such that the Booth function:

(2) BO(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 ≤ ǫ = 0.001

is minimized using the following parameters: n = 2, p = 100, pe = 30, pm = 20,
ρe = 0.7, hs = 0.5, he = 0.0001, seed = 270001, and MaxPointsToExamine= 100.

time: 0

best value: 0.364822436897729

chromosome: 0.555903959151367 0.658309974830011

solution: 1.11807918302734 3.16619949660022

time: 0

best value: 0.346961865714319

chromosome: 0.555724931575396 0.658135478047686

solution: 1.11449863150791 3.16270956095372

time: 0.0100000016391277

best value: 0.338488940337037

chromosome: 0.555406193917939 0.658273567572868

solution: 1.10812387835878 3.16547135145736

...

time: 0.0199999995529652

best value: 0.0797904488735659

chromosome: 0.552521069310988 0.65411561060226

solution: 1.05042138621977 3.0823122120452

time: 0.0300000011920929

best value: 0.0725596441205848

chromosome: 0.552457758851641 0.653873759851306

solution: 1.04915517703282 3.07747519702611

...

time: 0.0399999991059303

best value: 0.00208143439742911

chromosome: 0.549781849591604 0.651186244074817

solution: 0.995636991832074 3.02372488149633

time: 0.0399999991059303

best value: 0.0011093298963903

chromosome: 0.549845019966439 0.650862914454092

solution: 0.996900399328776 3.01725828908185

time: 0.0399999991059303

best value: 0.000415380069146002

chromosome: 0.54974127275453 0.65063545782961

solution: 0.9948254550906 3.01270915659219

The global minimum of Booth function in domain [−10, 10]2 is x∗ = (1, 3) with
BO(x∗) = 0. brkga reached an ǫ-optimal solution in 0.04 seconds.

THE LIBBRKGA BRKGA LIBRARY 13

5. An example

In this section, we illustrate the use of the library with an example. We give
step-by-step instructions on how to solve the example problem.

(1) Create the following program with your favorite editor:

#include <brkga>

using namespace std;

double main(int argc, char **argv){

double res;

res = brkga(argc,argv);

return res;

}

and save the code in the file program.cpp.
(2) Implement the function to be minimized as a Python module. For example,

the Booth function described in Equation (2) can be implemented as:

def g(x):

return (x[0] + 2*x[1] - 7)**2 + (2*x[0] + x[1] - 5)**2

and save the module in the file booth.py.
(3) Create a file with the parameters to be used by program, as for example:

-n 2 -p 100 -pe 30 -pm 20 -rho 0.7 -sd 270002

-hs 0.5 -he 0.0001 -mp 100 -of output.file

-md booth -ft g -ds 2 -ov 0 -ep 0.001 -dm -10 10

and name it, for example, input. Do not forget to set the options -md and
-ft to the file name and function name, respectively. In this example, -md
and -ft assume the values booth and g, respectively.

(4) Compile the program program.cpp:

$ g++ -I/usr/local/include/python2.7 program.cpp -o program -lbrkga

in order to create an executable file program.
(5) Update the environment variables LD LIBRARY PATH and PYTHONPATH:

$ export LD_LIBRARY_PATH=/usr/local/lib

$ export PYTHONPATH=\$PWD:/usr/local/lib/python2.7/site-packages/brkga

(6) Type the following command to run the program:

$./program input

which will generate the following output:

time: 0

best value: 12.4012134738348

chromosome: 0.581168300768524 0.548574313721584

solution: 1.62336601537048 0.971486274431687

time: 0

best value: 12.3474407799779

chromosome: 0.581425563994368 0.548582444743471

solution: 1.62851127988736 0.971648894869421

14 R. M. A. SILVA, M. G. C. RESENDE, AND P. M. PARDALOS

time: 0

best value: 1.37095603268167

chromosome: 0.581271020237308 0.606722778504266

solution: 1.62542040474616 2.13445557008533

...

time: 0

best value: 0.00557839553419341

chromosome: 0.551554290499392 0.647371106326124

solution: 1.03108580998784 2.94742212652249

time: 0.0100000016391277

best value: 0.00469662572651842

chromosome: 0.551673490240309 0.647503577550343

solution: 1.03346980480617 2.95007155100685

time: 0.0100000016391277

best value: 0.00386471817351207

chromosome: 0.551771612778688 0.647686909115509

solution: 1.03543225557376 2.95373818231018

...

time: 0.0100000016391277

best value: 0.00161491569733645

chromosome: 0.551430859265283 0.648589965864915

solution: 1.02861718530566 2.97179931729831

time: 0.0100000016391277

best value: 0.00124031772545151

chromosome: 0.551235158765371 0.64874553358115

solution: 1.02470317530743 2.97491067162299

time: 0.0100000016391277

best value: 0.00093213902486317

chromosome: 0.551099949712698 0.648945371002258

solution: 1.02199899425395 2.97890742004516

Suppose that you decide to change the function to be optimized. For example,
instead of Booth function, consider the Ackley function described in Equation (1).
The necessary steps to incorporate this new function are as follows:

(1) Implement the Ackley function in Python as described in Section 4.5 and
save it in file ackley.py.

(2) Update at least the options related to the function in the file input: -md,
-ft, -ds, -ov, and -dm. For example:

-n 2 -p 100 -pe 30 -pm 20 -rho 0.7 -sd 270001

-hs 0.5 -he 0.0001 -mp 100 -of output.file

-md ackley -ft f -ds 30 -ov 0 -ep 0.001 -dm -15 30

(3) Run the program again:

$./program input

which will generate the following output:
time: 0.00999999791383743

best value: 19.1725252961828

chromosome: 0.638643671604371 0.905998561724551 0.281621670470377 0.513249500668442

0.348389990408839 0.665679093633857 0.0107783206790348 0.190419937479696 0.641232143378347

0.677723271158611 0.0966381069453744 0.45433941498349 0.512932069438723 0.150989073578167

THE LIBBRKGA BRKGA LIBRARY 15

0.443569251061121 0.346650077875665 0.458253420734324 0.434912044616373 0.468066306535667

0.0531229862946047 0.145311589717316 0.59960529854232 0.352107937350035 0.42377728797228

0.423693094890408 0.572061629506032 0.352959659627264 0.506297421802206 0.776051438377806

0.450260529856232

solution: 13.7389652221967 25.7699352776048 -2.32702482883303 8.09622753007989

0.677549568397747 14.9555592135236 -14.5149755694434 -6.43110281341369 13.8554464520256

15.4975472021375 -10.6512851874582 5.44527367425705 8.08194312474253 -8.20549168898247

4.96061629775047 0.599253504404928 5.62140393304457 4.57104200773676 6.06298379410501

-12.6094656167428 -8.46097846272078 11.9822384344044 0.844857180751566 4.0699779587526

4.06618927006835 10.7427733277714 0.883184683226903 7.78338398109926 19.9223147270013

5.26172384353044

time: 0.00999999791383743

best value: 19.0968958877304

chromosome: 0.638651165932213 0.222232366475622 0.281619427856971 0.513232053763447

0.429619020665968 0.436421305732719 0.0107883712725076 0.190419578739964 0.641213139974188

0.677713785139143 0.0440928567274927 0.454326880656463 0.867414208090463 0.15098525094168

0.156826504491548 0.308829861748414 0.458263763416431 0.0627351854969807 0.468057902616373

0.313481387175526 0.388080379541698 0.599588304472725 0.352115702202921 0.423787079802667

0.423689611390388 0.831719401838573 0.352964340886717 0.506304447612037 0.776053118377535

0.457594001455955

solution: 13.7393024669496 -4.99954350859702 -2.32712574643631 8.09544241935513

4.33285592996854 4.63895875797235 -14.5145232927372 -6.43111895670163 13.8545912988384

15.4971203312614 -13.0158214472628 5.44470962954085 24.0336393640708 -8.20566370762441

-7.94280729788035 -1.10265622132138 5.62186935373938 -12.1769166526359 6.0626056177368

-0.893337577101345 2.46361707937639 11.9814737012726 0.845206599131426 4.07041859112003

4.06603251256747 22.4273730827358 0.883395339902266 7.78370014254167 19.9223903269891

5.59173006551798

...

time: 18.1300010681152

best value: 0.00100373106409934

chromosome: 0.333334096034686 0.333336017947008 0.333331112934064 0.333338490667066

0.333336652873691 0.333332217329821 0.333357193290142 0.333337136934286 0.333334685523522

0.333333499304594 0.333336640021927 0.333334226179959 0.333327756504409 0.333337598339253

0.33333783622858 0.333336202547095 0.333340745454414 0.333337812065997 0.333335273082437

0.33333595488429 0.33333572862701 0.333333688741552 0.333338250239139 0.333337405859493

0.333335200543652 0.333333882032975 0.333337189067944 0.333332319347127 0.333340256542409

0.333333087405219

solution: 3.43215608644698e-05 0.000120807615378027 -9.99179671392625e-05

0.00023208001799091 0.000149379316100706 -5.02201580658834e-05 0.00107369805639301

0.000171162042875039 6.08485584692176e-05 7.46870671264332e-06 0.000148800986705666

4.01780981693634e-05 -0.000250957301608068 0.000191925266376458 0.000202630286095129

0.000129114619262793 0.000333545448608419 0.000201542969870516 8.72887096541319e-05

0.000117969793031136 0.000107788215473192 1.59933698178349e-05 0.00022126076124529

0.000183263677195455 8.40244643356414e-05 2.4691483888617e-05 0.00017350805746652

-4.56293792989726e-05 0.000311544408388542 -1.10667651469498e-05

time: 18.1400012969971

best value: 0.00097975917400861

chromosome: 0.333339508569033 0.333338747226589 0.333332520386603 0.333337881721986

0.333336029624341 0.333334655018578 0.333356036440079 0.333335457466844 0.333336448549794

0.333333586944863 0.333338466942912 0.333336634859702 0.333329395853438 0.333337800647458

0.333332217920314 0.333339070638648 0.333335360653192 0.333337762400589 0.333336214406694

0.333335596049069 0.333337203112934 0.333334447280189 0.33333928894749 0.333336221590173

0.333336382531488 0.333336271222185 0.333334268303523 0.33333176655625 0.333338190357919

0.33333591251443

solution: 0.000277885606484674 0.000243625196509001 -3.65826028509986e-05

0.000204677489360705 0.00012133309535578 5.94758360161762e-05 0.0010216398035432

9.55860079621118e-05 0.000140184740745397 1.14125188268588e-05 0.000231012431038735

0.000148568686578088 -0.000177186595308854 0.000201029135604713 -5.01935858601144e-05

0.000258178739159121 9.12293936554676e-05 0.000199308026521905 0.000129648301248508

0.000101822208096181 0.000174140082046748 5.01276085262958e-05 0.00026800263703386

0.000129971557797148 0.000137213916969969 0.000132204998333663 4.20736585393655e-05

-7.05049687699244e-05 0.000218566106358509 0.000116063149356194

6. Concluding remarks

In this paper, we describe how to download, install, configure, and use an im-
plementation of the BRKGA heuristic for bound constrained global optimization.
Since BRKGAmakes no use of derivative nor a priori information, it is a well-suited
approach for solving general global optimization problems.

The BRKGA library libbrkga was implemented in C++, and on the runs done
for this paper it was compiled with the g++ version 4.4.3 compiler with flags -O6
-funroll-all-loops -fomit-frame-pointer. The pseudo-random number gen-
erator adopted is theMersenne Twister implemented by Matsumoto and Nishimura
(1998) and available at http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/

MT2002/emt19937ar.html.

16 R. M. A. SILVA, M. G. C. RESENDE, AND P. M. PARDALOS

All runs reported in this paper were done on a computer with a quad core 2.8 GHz
6 MB cache Intel i7 I7-720QM processor and 6 Gb of 1333 MHz DDR3 SD RAM
memory, running Ubuntu 10.04 LTS (Lucid Lynx).

Acknowledgment

The research of R.M.A Silva was partially supported by the Brazilian National
Council for Scientific and Technological Development (CNPq), the Foundation for
Support of Research of the State of Minas Gerais, Brazil (FAPEMIG), Coordination
for the Improvement of Higher Education Personnel, Brazil (CAPES), and Foun-
dation for the Support of Development of the Federal University of Pernambuco,
Brazil (FADE).

References

D.H. Ackley. A connectionist machine for genetic hillclimbing. Kluwer Academic
Publishers, Boston, 1987.

T. Bäck. Evolutionary algorithms in theory and practice. Oxford University Press,
New York, 1996.

J.C. Bean. Genetic Algorithms and RandomKeys for Sequencing and Optimization.
ORSA J. on Computing, 6:154–160, 1994.

J. Calcote. Autotools: A practitioner’s guide to GNU Autoconf, Automake, and
Libtool. No Starch Press, San Francisco, 2010.

M. Ericsson, M.G.C. Resende, and P.M. Pardalos. A genetic algorithm for the
weight setting problem in OSPF routing. J. of Combinatorial Optimization, 6:
299–333, 2002.

J.F. Gonçalves and J. Almeida. A hybrid genetic algorithm for assembly line bal-
ancing. J. of Heuristics, 8:629–642, 2002.

J.F. Gonçalves and M.G.C. Resende. An evolutionary algorithm for manufacturing
cell formation. Computers and Industrial Engineering, 47:247–273, 2004.

J.F. Gonçalves and M.G.C. Resende. Biased random-key genetic algorithms for
combinatorial optimization. J. of Heuristics, 17:487–525, 2011.

M.J. Hirsch, C.N. Meneses, P.M. Pardalos, and M.G.C. Resende. Global optimiza-
tion by continuous grasp. Optimization Letters, 1:201–212, 2007.

M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende. Speeding up continuous GRASP.
Journal of Operational Research, 205:507–521, 2010.

M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Mod-
eling and Computer Simulation, 8(1):3–30, 1998.

P. McGuire. Getting Started with Pyparsing. O’Reilly Media, Sebastopol, CA, 2007.
R.M.A. Silva, M.G.C. Resende, P.M. Pardalos, and J. F. Gonçalves. Biased random-
key genetic algorithm for bound-constrained global optimization. In D. Aloise,
P. Hansen, and C. Rocha, editors, Proceedings of the Global Optimization Work-
shop 2012, pages 133–136, 2012.

W.M. Spears and K.A. DeJong. On the virtues of parameterized uniform crossover.
In Proceedings of the Fourth International Conference on Genetic Algorithms,
pages 230–236, 1991.

SymPy, 2011. URL http://sympy.org/. Last visited on July 11, 2011.

THE LIBBRKGA BRKGA LIBRARY 17

R.F. Toso and M.G.C. Resende. A c++ application programming interface for
biased random-key genetic algorithms. Technical report, Algorithms and Opti-
mization Research Department, AT&T Labs Research, 2012.

G. van Rossum and F.L. Drake Jr., editors. Python/C API Reference Manual,
Release 2.7. Python Software Foundation, Wolfeboro Falls, NH, 2010a.

G. van Rossum and F.L. Drake Jr., editors. Extending and embedding Python,
Release 2.7. Python Software Foundation, Wolfeboro Falls, NH, 2010b.

(Ricardo M. A. Silva) Centro de Informática (CIn), Universidade Federal de Pernam-
buco, Av. Prof. Lúıs Freire s/n, Cidade Universitária, Recife, PE, Brazil.

E-mail address: rmas@cin.ufpe.br

(Mauricio G. C. Resende) Algorithms and Optimization Research Department, AT&T
Labs Research, 180 Park Avenue, Room C241, Florham Park, NJ 07932 USA.

E-mail address: mgcr@research.att.com

(Panos M. Pardalos) Department of Industrial and Systems Engineering, University
of Florida, 303 Weil Hall, Gainesville, FL, 32611, USA.

E-mail address: pardalos@ufl.edu

