
A Biased Random Key Genetic Algorithm for the Field Technician
Scheduling Problem

Ricardo B. Damma, Mauricio G.C. Resendeb,∗, Débora P. Ronconia,∗∗

aUniversity of São Paulo, Polytechnic School, Department of Production Engineering, São Paulo, Brazil, Av.
Prof. Almeida Prado, 128, Cidade Universitária, 05508-070, São Paulo SP, Brazil

bMathematical Optimization and Planning, Amazon.com, 333 Boren Avenue North, Seattle, WA 98109, USA

Abstract

This paper addresses a problem that service companies often face: the field technician

scheduling problem. The problem considers the assignment of a set of jobs or service tasks

to a group of technicians. The tasks are in different locations within a city, with different time

windows, priorities, and processing times. Technicians have different skills and working hours.

The main objective is to maximize the sum of priority values associated with the tasks per-

formed each day. Due to the complexity of this problem, constructive heuristics that explore

specific characteristics of the problem are developed. A customized Biased Random Key Genetic

Algorithm (BRKGA) is also proposed. Computational tests with 1040 instances are presented.

The constructive heuristics outperformed a heuristic of the literature in 90% of the instances.

In a comparative study with optimal solutions obtained for small-sized problems, the BRKGA

reached 99% of the optimal values; for medium- and large-sized problems, the BRKGA provided

solutions that are on average 3.6% below the upper bounds.

Keywords: Routing and scheduling technicians, time windows, heuristic, Biased Random Key

Genetic Algorithm

1. Introduction

This paper analyses the field technician scheduling problem (FTSP), which service compa-

nies often face [1, 2, 3], especially in telecommunications [4, 5, 6, 7]. These services are generally

∗Work of this author was done when he was employed by AT&T Labs Research.
∗∗Corresponding author: tel.: +55 11 30915363; fax: +55 11 30915399.

Email address: dronconi@usp.br (Débora P. Ronconi)

Preprint submitted to Computers & Operations Research May 9, 2016

maintenance or installation services that need to take into account several parameters: techni-

cians with different skills and working hours, time windows of tasks, cost of displacement and5

travel time, priority or urgency of service, due dates of the orders, etc. There are several possible

objectives for the FTSP, such as maximizing the number of performed tasks, minimizing the

completion time of all tasks, minimizing costs or total displacement, minimizing the number of

technicians, etc. In this paper we will primarily address the maximization of the total priority

of the performed tasks.10

According to Kovacs et al. [4] and Pillac et al. [8], the FTSP is an extension of the vehicle

routing problem with time windows (VRPTW), which is NP-hard. As far as we know, the

research on FTSP is not extensive and most papers focus on heuristic methods. Tsang and

Voudouris [7] and Xu and Chiu [9] were among the first authors to study the problem. After 2005,

the problem received increased attention in the literature, particularly in 2007, when the French15

Operational Research Society proposed the technician and task scheduling problem as the subject

of the 2007 challenge in collaboration with France Telecom. This company needed to deal with

a large increase in the number of services while having a limited number of technicians. Services

were divided into three groups of priorities and the objective function minimized a weighted sum

of the completion time of the last task of each group. Technicians had different levels of skills and20

teams could be organized to perform the services. Furthermore, some tasks could be outsourced

and some tasks had precedence constraints; on the other hand, the time windows to perform the

tasks were not imposed. Hashimoto et al. [5] applied the Greedy Randomized Adaptive Search

Procedure (GRASP) metaheuristic and Cordeau et al. [6] developed constructive heuristics and

customized the Adaptive Large Neighborhood Search (ALNS) heuristic to solve this problem.25

Kovacs et al. [4] studied a similar problem considering tasks with the same priority but with

different time windows. The objective function intended to minimize the costs of displacement

and outsourcing. The authors also applied the ALNS heuristic.

Other research studies also considered the formation of teams of technicians. In Dohn et

al. [10] the number of assigned tasks in a day is maximized subject to restrictions related to the30

teams and tasks time windows and with a limited number of teams. The authors introduced

a branch-and-price approach to address the problem and found 11 optimal solutions of the 12

2

realistic instances. Li et al. [3] intended to minimize the total number of workers and total

displacement in the port of Singapore by allocating different types of workers in teams. In

this problem each job must be carried out in a preestablished time window. The authors35

developed two constructive heuristics associated with simulated annealing to solve the problem.

In Overholts II et al. [11] the daily maintenance of military equipment in USA is scheduled

to maximize the weighted sum of the maintenance tasks performed. A mixed integer linear

programming model was developed to solve the problem. The authors presented a detailed

sensitivity analysis on security criteria and quality of daily maintenance services.40

The FTSP was also addressed considering real problems with the assumption that each

task can be performed by a single technician. In Tsang and Voudouris [7], the objective was

the minimization of the total cost: the cost of displacement of engineers, the cost of overtime,

and the cost (or penalty) of tasks not executed. This problem was a real problem faced by

British Telecom. Instead of specifying time windows in hours, three types of time windows were45

adopted for tasks: morning, afternoon, and indifferent. The authors developed two heuristics

for the problem: Fast Local Search and Guided Local Search. Tang et al. [2] developed a tabu

search metaheuristic for a real problem of United Technologies Corporation. It was a problem

of periodic maintenance of pieces of equipment located in buildings that were geographically

dispersed. The daily work of each technician has to be scheduled for a period of one or two50

weeks, aiming to maximize the total reward received from servicing the selected tasks over the

scheduling period (in this context, rewards are a value assigned to each task to represent its

urgency and not the monetary profit). Pillac et al. [8] analyzed the similarity between the

technician routing and scheduling problem and the vehicle routing problem with time windows.

The objective of both problems was to minimize the total travel time. The authors developed55

an ALNS parallel algorithm and validated the algorithm with instances of Solomon (1987) for

the VRPTW. Recently, Cortés et al. [1] presented a real problem of maintenance of printing

machines and digital copiers of a large company in Santiago, Chile. Twenty technicians usually

visit seventy customers every day, and according to customer relevance, the company establishes

a soft time window for each service, so that the most important customers are served first. The60

objective function considers the number of times that the time windows are violated, the number

3

of customers served, and the total travel time. A branch-and-price approach associated with

constraint programming was developed.

Observe that while Tang et al. [2], Overholts II et al. [11], Cordeau et al. [6], and Hashimoto

et al. [5] directly consider the priorities of the tasks, Tsang and Voudouris [7], Li et al. [3], Dohn65

et al. [10], Kovacs et al. [4], Pillac et al. [8], and Cortés et al. [1] tackle the allowed time windows

to perform the tasks. As far as we know, the only research that simultaneously approaches these

relevant characteristics of the maintenance services, as well as working hours of technicians, is

the one presented by Xu and Chiu [9]. These authors addressed the FTSP aiming to assign a set

of jobs, at different locations with time windows, to a group of field technicians with different70

job skills. The objective was to maximize the sum of priority values associated with the tasks

performed in a day and, secondly, the idle time of the employees after returning to the base. A

constructive heuristic, a local search algorithm, and a GRASP metaheuristic were proposed to

solve this problem.

Motivated by the practical relevance of the FTSP, e.g. [1, 2, 3, 5, 6, 7, 11], and the reduced75

number of studies that consider time windows and priorities of the tasks concurrently, in the

present paper we consider the same problem addressed by Xu and Chiu [9] through the develop-

ment of methods that explore these specific characteristics. Note that in the problem addressed

here, differently from the problem addressed in Cortés et al. [1], these tasks parameters are

independent (in fact we consider that the time window of the task is defined by the client) and80

both are considered in our resolution methods.

Initially, constructive heuristics are proposed; the small computational effort of such strategy

is one of the reasons that motivated this study. Then we present a customized Biased Random

Key Genetic Algorithm (BRKGA) metaheuristic, a Genetic Algorithm (GA) that uses random

keys and does not generate unfeasible solutions. The choice of BRKGA is based on its success in85

several combinatorial optimization problems: single machine [12], covering problem [13], divisible

load scheduling [14], lot sizing [15], telecommunications [16], winner determination in auctions

[17], bin packing problems [18], berth allocation problem [19], layout [20], and transportation

planning [21]. In special, BRKGA was successfully applied to related routing problems such as

the problem of routing and wavelength assignment in optical networks [22], the family travelling90

4

salesman problem [23], and a problem of collection of blood samples at clinical laboratories

[24], among others. On the other hand, as far as we know, the application of a population-based

metaheuristic such as BRKGA to the field technician scheduling problem (FTSP) has never been

reported in the literature. This scenario motivates the application of BRKGA to the FTSP. A

computational study with 1040 instances was carried out to analyze the performance of the95

suggested algorithms in comparison with methods of the literature and proposed upper bounds;

a comparison with optimal solutions values was also conducted for small problems.

This paper is organized as follows. Section 2 presents the mathematical model of the problem.

Section 3 describes the proposed constructive heuristics, while Section 4 explains how the Biased

Random Key Genetic Algorithm was customized for the focused problem. Section 5 presents100

two different schemes for the generation of upper bounds for the FSTP. Section 6 describes the

computational experiments and the last section summarizes the main results.

2. Mixed Integer Linear Programming Model

Based on the model proposed by Xu and Chiu [9], a Mixed Integer Linear Programming

(MILP) model for the problem is presented below. Let J = {1, ..., n} be a set of independent105

tasks or services and K = {1, ...,m} a set of technicians available to execute them. Let pi
be the processing time of task i that must be performed within a specific time window [ei, li].

Technicians should have their daily work schedule between [ak, bk]. The travel time from location

i to j is cij , with i, j ∈ J ∪ {0}, where 0 is a dummy task which represents the origin. Each

task i has a priority wi. The skill of a technician k to perform a task i is given by sik, a binary110

parameter, where 1 indicates “being capable” and 0, “unable to execute it”. Next, the variables

of the MILP model are described: yik is a binary variable that equals 1 if task i is assigned to

technician k and 0, otherwise; xijk is also a binary variable which assumes value 1 when task

i precedes task j in the route of technician k and 0, otherwise; ti is the start time of task i

execution, and zk is the idle time after technician k returns to the origin. The objective is to115

maximize the sum of priority values associated with the tasks performed each day and, secondly,

the idle time of the employees after returning to the origin (at the end of the day).

5

MILP model.

max
∑
i∈J

∑
k∈K
|sik=1

wiyik
MW

+
∑
k∈K

zk
MZ

(1)

Subject to:

∑
k∈K
|sik=1

yik ≤ 1 i ∈ J (2)

∑
j∈J∪{0}\i
|sjk=1

xijk =
∑

j∈J∪{0}\i
|sjk=1

xjik = yik k ∈ K, i ∈ J, sik = 1 (3)

∑
i∈J
|sik=1

x0ik ≤ 1 k ∈ K (4)

ei ≤ ti ≤ li − pi
∑
k∈K
|sik=1

yik i ∈ J (5)

ti + pi + cij ≤ tj +M(1− xijk) k ∈ K, i 6= j ∈ J, sik = sjk = 1 (6)

ak + c0j ≤ tj +M(1− x0jk) k ∈ K, j ∈ J, sjk = 1 (7)

ti + pi + ci0 ≤ bk − zk +M(1− xi0k) k ∈ K, i ∈ J, sik = 1 (8)

zk ≤ bk − ak k ∈ K (9)

yik ∈ {0, 1} i ∈ J, k ∈ K, sik = 1 (10)

xijk ∈ {0, 1} i, j ∈ J ∪ {0}, k ∈ K, sik = sjk = 1 (11)

ti, zk ∈ R+ i ∈ J, k ∈ K (12)

Where:

MW = min
i∈J

wi

MZ =
∑
k∈K

(bk − ak)

M = max
(

max
i∈J

li,max
k∈K

ak

)
+ max
i,j∈J∪{0}

cij

In the objective function (1), the first term maximizes the sum of priority values associated120

with the tasks performed each day, while the second term maximizes the sum of the idle time

after technicians return to the base. In other words, the first term aims to select technicians

for the priority tasks and the secondary objective minimizes their total travel time and waiting

6

time. The inclusion of this secondary objective is a strategy that allows performing new external

tasks at the end of the day or makes it possible for technicians to perform administrative tasks125

(such as reporting, performing equipment maintenance, etc.). The purpose of the denominator

is two-fold: obtain dimensionless values of the sum and ensure that it is always better to perform

a task and reduce technicians’ idle time, but never vice versa. Note that the term associated

with the execution of a task always has a value greater than one, while the term associated with

the idleness of a technician always has a value smaller than one.130

Constraints (2) ensure that each task is assigned at most to one technician. In equations

(3), when a task i is assigned to a technician k, there is only one predecessor and one successor

of i. Each technician must leave the origin at most once, as indicated by (4); these constraints

directly impact constraints (7) and (8), which ensure that solutions are within the time window

of technicians. Each task must be performed within its time window, as shown by constraints (5).135

When two tasks are assigned to the same technician and are consecutively executed, constraints

(6) guarantee that the beginning of service j occurs after the completion time of its predecessor

i plus the travel time between their locations. Constraints (6) - together with (7) and (8) -

prevent subtours. Constraints (9) ensure the unoccupied time of technicians after returning to

the origin as less than or equal to the size of their time windows. Constraints (10) and (11)140

define variables x and y as binaries, while constraints (12) define t and z as non-negative real

variables. Note that the variables yik are generated only when sik = 1 and variables xijk when

sik = sjk = 1, i.e. when the technicians can execute the tasks.

3. Constructive Heuristics

In this section, we propose three constructive heuristics for the FTSP, namely Shortest travel145

time, Nearest technician (that is a greedy insertion heuristic that is similar to the one of Xu

and Chiu [9]), and Cluster. Roughly speaking, these constructive heuristics order the tasks

according to a decision criterion and, after that, assign these tasks to technicians. The details

of the heuristics are presented below.

3.1. Shortest travel time (STT)150

This method consists of four steps:

7

1. Task Ordering: Sort the tasks in decreasing order of ρ, given by:

ρi =

 wi − NST i
m+1 , if n

m < 10

wi + wi
pi

+ pi
li−ei

, otherwise
(13)

where NST i is the number of skilled technicians for task i.

Note that if the instance has few tasks per technician (less than 10), the jobs

will be sorted in decreasing order of priority (wi) and the second part of the155

expression will only serves as a tiebreak when two or more tasks have the same

priority. On the other hand, when tasks per technicians are greater than or

equal to 10, it is more likely that some tasks will not be performed due to the

limited working time of the technicians. Considering this characteristic of these

instances, the calculation of the ρ also takes account the processing time of160

the tasks. The jobs will be sorted in decreasing order of priority plus priority

per processing time (wi + wi
pi

); if two or more tasks have the same value for

this expression, the value of pi
li−ei

is used as a tiebreak, i.e., tasks with the

highest processing time and shortest time window are programmed before. If

two or more tasks have the same ρi, sort the tasks in increasing order of the165

identification number of the task. Select the task i with the best rating.

2. Evaluation of candidate technicians: for each technician k able to execute task

i (i.e. sik = 1), evaluate all the possible positions of this task in his/her route.

Choose the position that provides a feasible solution with the greatest zk.

3. Selection of one technician: if there is no feasible solution in Step 2, go to 4.170

Otherwise, select the technician who can serve task i with the lowest total travel

time (from the beginning until return to the base). If more than one techni-

cian has the lowest total travel time, the second and the third decision criteria

are the greatest value for zk and the identification number of the technician,

respectively.175

4. Stop condition: if task i is the last task sorted in Step 1, stop. Otherwise, select

the next task i classified in the first step and go back to Step 2.

8

3.2. Nearest technician (NT)

This method also consists of four steps:

1. Task Ordering: Sort the tasks in decreasing order of ρ, given by (13). Select180

the task i with the best rating.

2. Selection of one technician: select the skilled technician k (not tried yet) with

the last scheduled task closest to the task i. When more than one skilled

technician has the minimum distance to task i (which occurs, for example,

when all technicians are at the base), select technician k who has the smallest185

sum of weighted skills (
∑
j∈D wj sjk, where D is the set of tasks that have not

been tried to be inserted yet). The last decision criterion is the technician

identification number. If no technician can perform this task, go to Step 4.

3. Scheduling the task: evaluate all possible positions of the task i in the route of

technician k. If there are feasible solutions, choose the position that provides190

a solution with the greatest zk and go to the next step. Otherwise, return to

Step 2.

4. Stop condition: if task i is the last task sorted in Step 1, stop. Otherwise, select

the next task i classified in the first step and go back to Step 2.

3.3. Cluster195

The main idea of this heuristic is to balance the strategy of exploiting clusters and the

methods that consider tasks in all regions simultaneously. Initially, this heuristic identifies areas

with a high concentration of tasks (clusters) and assigns values (P) to them. The clusters are

ranked in descending order of their P values and a certain number of technicians (ntec) are

assigned to them. These technicians are chosen according to their ability of performing tasks200

with a good benefit for time unit, i.e., the scheduling of tasks with the highest ratio of priority

per time unit wi
pi

is privileged. After that, the other tasks are scheduled through the NT heuristic

previously presented. The choice of the NT heuristic was based on preliminary tests where it

was observed that its combination with the cluster strategy provides slightly better results than

the association of this strategy with the STT heuristic. The main steps of this method are205

described next.

9

1. Defining the number of clusters and identifying their centers: the number of

clusters depends on the number of tasks. If the total number of tasks (n)

is greater than 100, then there will be 10 clusters; otherwise, the number of

clusters will be d n10e. Tasks are sorted in descending order of µi = wi
pi

and the210

first task is the center of the first cluster. The center of the second cluster is the

next task with more than tcluster minutes of displacement from the first center.

The center of the third cluster is the next task with more than tcluster minutes

of displacement from the first and the second clusters, and so on. Nonetheless,

if all tasks are analyzed and it is not possible to select a new center, then there215

will be less than 10 or d n10e clusters.

2. Building clusters and calculating their values: for each task, identify the closest

center; if the displacement from this center to the task is less than tcluster

minutes, then assign it to this cluster; otherwise, this task is not included in

any cluster. Next, calculate the value P of each cluster, given by
∑
i∈A µi. Set A220

is composed by the tasks in the evaluated cluster that present a ratio of priority

per time unit greater than a pre-established ideal value, i.e. µi ≥ µideal.

3. Assigning ntec technicians to clusters:

(a) Select cluster C with the highest value P . If all clusters have values equal

to zero, go to Step 4.225

(b) For cluster C, calculate the fitness of each technician k not associated with

any cluster, given by
∑
j∈B wjsjk, where B is the set of all unscheduled

tasks in cluster C; however, if a technician is unable to execute all tasks

with µi ≥ µideal in B, fitness is zero.

(c) If fitness of all technicians is zero, change the value of cluster C to zero and230

return to Step 3a. Otherwise, select technician k with the highest fitness.

(d) Select tasks in Cluster C with µi ≥ µideal, sort them in decreasing order of

µi and select task i with the best ranking.

(e) Evaluate all possible positions of task i in the route of technician k. If there

is no feasible solution, go to the next step. Otherwise, choose the position235

that results in a feasible solution with the greatest zk.

10

(f) If task i is the last task sorted in Step 3d, go to the next step. Otherwise,

select the next task i and go back to Step 3e.

(g) If ntec technicians are already assigned to clusters, go to Step 4. Otherwise,

update the value P of cluster C (given by
∑
i∈A µi, where A is the set of240

unscheduled tasks in C with µi ≥ µideal) and return to Step 3a.

4. Scheduling the remaining tasks and technicians: schedule the remaining tasks

using the NT constructive heuristic.

Other methods were developed to order tasks according to other rules (processing time,

beginning or size of time window, number of technicians able to perform a task, etc.) and to245

minimize the idle time between tasks, considering the number of skills of each technician, etc.

The performance of these strategies was worse than the three heuristics described earlier and

their details will be omitted.

4. Biased Random Key Genetic Algorithm (BRKGA)

Introduced by Holland in 1975, the genetic algorithms (GAs) are inspired by Darwin’s evo-250

lution theory and work with populations of solutions that evolve over successive generations.

Each solution of the optimization problem being solved is represented by an individual or a

chromosome of the population. The quality of each solution is measured by a fitness function

(e.g., objective function value) and the search proceeds over a number of generations, where

each individual contribution to the next generation is based on its fitness [25].255

Aiming to improve the performance of the traditional GA, Bean [26] proposed a specific

GA for combinatorial problems which uses vectors of random keys (real numbers between 0

and 1) to represent the chromosomes. This method examines the solution space of the problem

indirectly by searching within the space of random keys (problem-independent) and uses a

decoder (problem-dependent) to map solutions of random keys to the solution of the optimization260

problem [23, 27]. It should be stressed that an essential element of the RKGA is the decoder that

should be specified in such way to avoid the generation of unfeasible solutions of the optimization

problem. This version of the GA was called Random Key Genetic Algorithm (RKGA) and has

been applied to many research studies, providing good results. For instance, Gonçalves et

11

al. [28] applied the RKGA to the job shop problem and achieved the best known results in the265

literature in 72% of the tested problems, outperforming seven different versions of GA and other

metaheuristics, such as Simulated Annealing and GRASP.

More recently, a new concept was introduced into this GA to increase the prevalence of

the best solutions (the best fitness values or elite set) of each generation [27]: in the crossover,

one parent is always chosen from the best solutions (in Bean [26] both parents are chosen270

randomly from the entire previous generation). This new version was called by Biased Random

Key Genetic Algorithm (BRKGA), where Biased refers to the prevalence of the elite solutions.

Comparisons between standard GA, RKGA, and BRKGA for different optimization problems

can be found in Gonçalves and Resende [27] and Gonçalves et al. [29]; the authors concluded

that the BRKGA is more effective than the RKGA. Noronha et al. [22] studied the problem275

of Routing and Wavelength Assignment and the results obtained by BRKGA outperformed the

best heuristics from the literature (the best fit decreasing heuristic and the partition coloring

problem heuristic), both in quality and computational cost. Additionally, in Resende et al. [13],

on the problem of Steiner triple covering, the BRKGA reached optimal solutions for all instances

in which these solutions are known, and for two large instances, the BRKGA found better results280

than the literature. Due to the good results obtained by BRKGA in previous works, the current

research aims to develop a customized BRKGA for the resolution of the FTSP. It should be

pointed out that, to the extent of our knowledge, no application of this approach to the FTSP

has been examined in the literature.

According to Morán-Mirabal et al. [23], the BRKGA metaheuristic can be described as fol-285

lows. The initial population P0 is composed of np vectors (or chromosomes) and each vector,

λj(j = 1, . . . , np), has nc random numbers (or genes) in the interval (0, 1], represented by λj [i]

(i = 1, . . . , nc). A decoder transforms each chromosome λj into a feasible solution of the opti-

mization problem and a fitness value f(λj) is computed. Each generation Pg is divided into two

groups; the ne best (elite) solutions make up the first group (P eg) and the remaining (non-elite)290

solutions are included in the second set P ēg , where |P eg | < |P ēg |. To develop the next generation

(g+ 1), all elite solutions are copied into population Pg+1, a set of nm new random solutions are

generated (called mutant individuals) and the rest of the individuals (n0 = np − ne − nm)

12

are created by a parameterized uniform crossover between pairs of individuals from Pg. In this

parameterized uniform crossover, two chromosomes are selected at random: one from P eg and295

another from P ēg . One randomly generated real number between 0 and 1 selects each gene of

the offspring: the probability of the elite parent to transmit its gene is equal to or larger than

Algorithm 1 Framework of the BRKGA (based on Morán-Mirabal et al., 2014)
Input: np, nc, ne, nm, pe

1: Create P0 with np individuals: include solutions provided by constructive heuristics (if there

are some) and generate the remaining chromosomes with nc random-keys ∈ (0; 1]

2: g = 0

3: while stopping criterion is not satisfied do

4: Evaluate fitness of each new individual in Pg

5: Partition Pg into P eg and P ēg

6: Initialize next population: Pg+1 ← P eg

7: Generate nm mutants, Pm, each one having nc random-keys ∈ (0; 1]

8: Pg+1 ← Pg+1 ∪ Pm

9: for k ← 1 to np − ne − nm do

10: Select parent a at random from P eg

11: Select parent b at random from P ēg

12: for i← 1 to nc do

13: Generate a real number prandom between 0 and 1

14: if prandom ≤ pe then c[i]← a[i]

15: else c[i]← b[i]

16: end if

17: end for

18: Pg+1 ← Pg+1 ∪ {c}

19: end for

20: g ← g + 1

21: end while

22: Return λ∗ ← argmax{f(λg)|λg ∈ Pg}

13

the non-elite parent, ensuring that the elite parent has a greater chance to pass along its keys.

There are no mutations after crossover; the diversification is guaranteed by the mutants. Once

population Pg+1 is formed, all operations are repeated until a stopping criterion is reached. The300

best chromosome of the last population is returned as the solution of the optimization problem.

Algorithm 1 presents the BRKGA’s framework for maximization problems.

Elite population diversification. During the initial computational experiments a premature con-

vergence was observed. Aiming to avoid this undesirable behavior, a similarity measure was

proposed to diversify the elite group. Applying this measure, only the best solutions with a305

predetermined percentage of different genes can be included in the elite set. A similar idea was

analyzed by Armentano and Ronconi [30]. For example, Table 1 shows the best 6 chromosomes

of one instance in the tenth generation sorted in decreasing order of the objective function. Each

row represents one chromosome, while each column represents the random key associated with

each task. Assume that the elite group size is 3. Note that there are columns with the same310

random key for almost all chromosomes. Assuming 60% as the maximum degree of similarity

(DS) allowed, only chromosomes with up to 4 identical keys are considered for inclusion in the

elite set. Considering that the elite group is empty, chromosome 1 (the best solution) is included

in this group. The second and the third chromosomes have 5 and 6 identical keys to the first

chromosome and therefore, they are not included. Chromosomes 1 and 4 have the same keys315

for only 3 tasks, so chromosome 4 is the second element of the elite group. Chromosomes 5

Table 1: Example of the best six individuals of a population in tenth generation

Chromosomes Random Keys

1 0.63 0.55 0.88 0.65 0.45 0.97 0.32

2 0.63 0.55 0.88 1.00 0.58 0.97 0.32

3 0.63 0.55 0.88 0.65 0.45 0.34 0.32

4 0.63 0.55 0.17 0.65 0.68 0.37 0.02

5 0.63 0.55 0.88 0.65 0.68 0.37 0.02

6 0.78 0.29 0.88 0.19 0.68 0.97 0.23

14

and 4 have the same keys in 6 positions, so chromosome 5 is rejected. The sixth chromosome

is included in the elite group, because it has only 2 and 1 keys identical to chromosomes 1 and

4, respectively. Observe that, if the three best chromosomes were selected, there would be the

same key for 4/7 of the tasks in the elite group. With the application of the similarity measure,320

chromosomes 1, 4 and 6 were selected and all tasks have two or more different values of keys in

the elite group, thus increasing the diversification in the BRKGA.

Algorithm 2 shows the pseudo code of the construction of the elite set using the similarity

measure, where limit time is a prefixed time (stop criterion) sufficient for BRKGA to reach

convergence; the other parameters and variables are self-explanatory. The elite set is initially325

formed by the best solution (line 2) and the other elements are selected inside the main loop

from lines 4 to 29. Inside this loop, it is necessary to decide if a candidate chromosome can

be included or not in the elite group (lines 7 and 21). With this purpose, the number of equal

random keys between two chromosomes is calculated (lines 13 to 16) and the algorithm checks if

the percentage of equal random keys is superior to DS (lines 17-18). Attempting to reduce the330

computational cost of this algorithm, two conditions are checked before considering a candidate

chromosome: first, if the objective function of the candidate is equal to the previous chromosome,

then the candidate is not included in the elite set (line 7-8); secondly, if two chromosomes were

in the elite group of the previous generation, then their similarity is less than DS (line 11) and it

is not necessary to calculate the number of equal random keys. Finally, it should be emphasized335

that, if the percentage of chromosomes with similarity less than DS is small, then the elite set

cardinality can be less than ne. However, as the percentage of equal random keys of the P eg−1

is inferior or equal to DSg−1, P eg−1 ⊂ Pg, and DSg−1 ≤ DSg, then there will certainly be ne
elements in P eg .

15

Algorithm 2 Construction of the elite set using the similarity measure
Input: current population (Pg), elite set of the previous generation (P eg−1),

objective function (f), np, ne, nc, limit time, DS0

Output: elite set of the current population (P eg)

1: Rank Pg in descending order of the value of the objective function

2: Include the best solution λ1 in P eg (P eg ← {λ1})

3: j ← 2 and DS ← DS0 + (1−DS0) · current timelimit time

4: for i← 2 to ne do

5: while λj /∈ P eg and j < np do

6: decision← 0

7: if f(λj) = f(λj−1) then

8: decision← −1

9: else

10: for k ← 1 to j − 1 do

11: if λk ∈ P eg and λj or λk /∈ P eg−1 then

12: counter ← 0

13: for q ← 1 to nc do

14: if λk[q] = λj [q] then counter ← counter + 1

15: end if

16: end for

17: if counter
nc

> DS then decision← −1 and k ← j

18: end if

19: end if

20: end for

21: end if

22: if decision = −1 then j ← j + 1

23: else P eg ← P eg ∪ {λj}

24: end if

25: end while

26: if j = np then i← ne

27: else j ← j + 1

28: end if

29: end for

It should be highlighted that a crucial component of the BRKGA is the decoder that trans-340

forms each chromosome λj into a feasible solution of the problem at hand. Furthermore, it is

important to determine an encoder that can convert a feasible solution (e.g. the solutions pro-

vided by constructive heuristics) into an encoded chromosome. There are many different ways

to determine the decoder and the encoder. Next, we describe the three algorithms proposed in

this paper.345

4.1. Proposed BRKGA for the FTSP

This section presents three versions of BRKGA and describes their main components. The

first version is based on the STT constructive heuristic and the second one is based on the

Cluster constructive heuristic. In the third version, random keys are used to assign tasks to

technicians and to construct the routes.350

4.1.1. BRKGA-STT:

This BRKGA version represents a solution with a vector composed of n elements that asso-

ciates one random key with each task. The initial population comprises random chromosomes

and the solution found by the constructive heuristic STT. The heuristic solution is encoded by

the following value in each element of the vector:355

λ[i] = ρi
ρmax

where ρi is defined in (13) and ρmax = max{ρi|i = 1, . . . , n}+ ν and ν is a very small number.

A vector is decoded by sorting the random keys in decreasing order; the first task is tried

to be executed by each technician using the second step of the STT heuristic; if at least one

feasible insertion position exists, one technician is selected as described in the third step, and

these steps are repeated for the second and subsequent tasks, until the last task is tried to be360

scheduled.

4.1.2. BRKGA-Cluster:

In the Cluster heuristic, some technicians are assigned to a specific cluster to perform prof-

itable tasks and, after that, the remaining tasks are scheduled considering all regions simulta-

neously. Following this idea, this BRKGA uses n random keys to represent the priority of the365

17

n tasks and one random key (the last random key of the vector) to determine the percentage of

technicians assigned to clusters. The initial population of the BRKGA is composed of random

chromosomes and the solution found by the constructive heuristic Cluster, which is encoded by

the following value in each random key:

λ[i] =

 0.9 + 0.1 · µi−µideal
µmax−µideal

, if µi ≥ µideal
0.9 · ρi

ρmax
, otherwise

where ρi is defined in (13), µi = wi
pi

, µmax = max{µi|i = 1, . . . , n} + ν and ν is a very small370

number.

A vector λ is decoded using the steps of the Cluster constructive heuristic. In Steps 1 and 2,

parameters µi and µideal are replaced by λ[i] and 0.9, respectively (preliminary tests indicated

that it is better to fix µideal at 0.9 than to let the algorithm find an ideal value for it). The

number of technicians assigned to clusters in Step 3 is ntec = dλ[n+ 1] ·me. Finally apply Step375

4 to assign the remaining tasks. It should be noted that, in this last step, the remaining tasks

are initially sorted by decreasing order of λ[i] (initial stage of the NT heuristic).

4.1.3. BRKGA-A: assigning tasks and building random routes

In this version of the BRKGA, chromosomes are also vectors composed of n random keys.

The initial population comprises randomized solutions and solutions provided by the construc-380

tive heuristics. Each decoded solution is transformed into a feasible solution of the problem

through the following procedure: each random key of chromosome λ is used to assign one skilled

technician to each task; next, to build the route of each technician, tasks are sorted by an index

(ψi) extracted from the previous random key.

To illustrate this mechanism, Table 2 shows an example with four tasks and three technicians.385

Two technicians can perform the first task; then, if the key is in the range (0, 1/2], it is assigned

to the first technician (or technician number 2); otherwise, the second technician is selected (or

technician number 3). Tasks 2 and 3 are similar. For task 4, there are three possibilities of

technicians, so ranges are (0, 1/3], (1/3, 2/3], and (2/3; 1]. Thus, the technician selected for task

i in the chromosome λ is:390

TCi = dλ[i] ·NST ie

18

Table 2: Skill of technicians in an example with four tasks and three technicians

Task/Technician 1 2 3

1 0 1 1

2 1 1 0

3 1 0 1

4 1 1 1

where TCi is the n-th technician able to perform task i and NST i is the number of skilled

technicians (
∑
k∈K sik) for task i. For example, according to the skills of technicians in Table 2,

a chromosome (0.23, 0.94, 0.35, 0.57) assigns task 3 to the first technician, tasks 1, 2, and 4 to

the second, and no task is assigned to the third technician.

After assigning all tasks to technicians, tasks of each technician are sorted by an index395

(ψi), which is the percentage of the distance between the random key and the beginning of the

subinterval that corresponds to the technician for each task. In this example, task 2 is assigned

to technician 2, because the key is in the interval (1/2, 1], so the index (ψi) is 0.94−0.5
0.5 = 0.88.

The general formula of the index (ψi) can be defined as follows:

ψi =
λ[i]− TCi−1

NSTi

1
NSTi

= NSTi · λ[i]− TCi + 1

The indices (ψi) of the four tasks of the example are, respectively: 0.46, 0.88, 0.70 and 0.71.400

Therefore, tasks are inserted in the route of technician 2 in the following order: 1, 4 and 2.

Starting from the first to the last task, all possible positions in the route of the technician are

evaluated for each task and the position that results in a feasible solution with longest idle time

after returning to the base (zk) is chosen. If there is no feasible solution for a task, then it is

not performed.405

The solutions of the constructive heuristics (STT, NT and Cluster) are added to the initial

population of the BRKGA-A with the following value in each key:

λ[i] =
TCi − ρi

ρmax

NSTi

If a task was not assigned to any technician by the constructive heuristics, then a technician

19

(TCi) is randomly selected and the value of the key is:

λ[i] =
TCi − ν

ρmax

NSTi

where ν is a very small number.410

5. Generation of upper bounds

In order to evaluate the quality of heuristic solutions in medium and large FTSP problem

instances, we propose to generate upper bounds by relaxing the constraints of the original model.

The first upper bound model is an improvement of the best model proposed by Xu and Chiu

[9], while the second model is our proposal to address this problem.415

5.1. Model 1: Simplifying travel times and time windows

A possible strategy to obtain an upper bound for the problem at hand involves the con-

struction of a basic MILP model, based on the model presented in Section 2, that disregards

travel times and time windows. This model can be generated by deleting all restrictions of the

original model, except restriction (2), and including a new restriction to ensure that the sum of420

the processing times of the tasks assigned to each technician does not overcome his/her daily

working hours. However, to improve this model, the travel time and time window concepts can

be reintroduced in a simplified form. For time windows, a set E was defined, containing pairs

of conflicting tasks, i.e., tasks i and j that can not be performed by the same technician due to

the time window restrictions. Set E is defined as follows:425

E = {(i, j)|i 6= j ∈ J, ei + pi + cij > lj − pj and ej + pj + cji > li − pi} (14)

To estimate travel times, for each technician k a minimum previous time δik immediately

before the execution of task i was calculated, which can be the real travel time or the waiting

time (difference between the time window of task i and its potential predecessor j). Potential

predecessors are the base and tasks j that technician k can execute (sjk = 1) before task i. The

20

previous time of the base is τ0ik = max{c0i, ei−ak} and the previous time of a task j (1 ≤ j ≤ n)430

is:

τjik =

 max{cji, ei − lj}, if sik = sjk = 1 and ej + pj + cji ≤ li − pi

bk − ak, otherwise
(15)

Therefore, δik is defined as follows:

δik = min{τjik | 0 ≤ j ≤ n, j 6= i} (16)

Finally, to determine the minimum travel time of each technician k to return to the base,

parameter φk was established as follows:

φk = min{ci0 | i ∈ J, sik = 1} (17)

The complete model follows:435

max
∑
i∈J

∑
k∈K|sik=1

wiyik
MW

+ 1
MZ

·

∑
k∈K

(bk − ak)−
∑
i∈J

∑
k∈K|sik=1

(pi + δik)yik

 (18)

s.t.

∑
k∈K
|sik=1

yik ≤ 1 i ∈ J (19)

∑
i∈J
|sik=1

(pi + δik)yik + φk ≤ bk − ak k ∈ K (20)

yik + yjk ≤ 1 (i, j) ∈ E, k ∈ K, sik = sjk = 1 (21)

yik ∈ {0, 1} i ∈ J, k ∈ K, sik = 1 (22)

The objective function (18) is similar to the MILP model presented in Section 2. The

difference is the secondary objective: instead of idle time of technicians (zk), we considered

the sum of the total number of working hours and subtracted the processing time (pi) and

the minimum previous time (δik) of all assigned tasks. Constraints (19) ensure that no task is440

assigned to more than one technician. Constraints (20) guarantee that the sum of processing

21

times, the minimum previous time of the tasks, and the minimum time to return to the base

does not exceed the working hours of the technician. If it is impossible for the same technician

to execute two tasks, this pair belongs to set E and restrictions (21) ensure that they are not

assigned to the same technician.445

It should be highlighted that, although this model is based on the best model proposed by

[9] to obtain an upper bound, four improvements were carried out: i) in set E, we included the

travel time (cij) to determine whether the two tasks are confliciting; ii) when calculating the

minimum previous time for each task i, we took into account only the tasks j that can indeed

be executed before (as shown by equation (15)); iii) the minimum time for each technician k450

to return to base (φk) was included in restriction (20); and iv) we generated variables yik only

when sik = 1.

5.2. Model 2: Limiting the working hours of technicians and excluding unfeasible combinations

of tasks

In this model, instead of restrictions (20) and (21) presented in Section 5.1, another approach455

was adopted to represent the travel time and time window concepts. First, for each technician

k, a complete enumeration of all eligible tasks, i.e. sik = 1, was performed to determine the

maximum sum of processing times (pmaxk) that can be executed by this technician respecting

his/her work time restriction, the travel times, and the time windows of tasks. Similarly, the

maximum feasible weighted processing time (wipi) for each technician k (pwmaxk) was deter-460

mined. To avoid the generation of solutions that exceed these limits, restrictions (25) and (26)

were added to the model.

To eliminate unfeasible solutions, instead of set E (see equation (14)), new restrictions were

included. For each technician k, considering the eligible tasks, all possible groups with up to

four tasks (A1, A2, A3, and A4) were generated. For each one of these groups, a complete465

enumeration was performed to verify whether a feasible solution could be found. If there is

no feasible solution (due to the paths that violate the time window constraints), restrictions

(27)-(30) were added to exclude that specific group. A similar idea can be found in Ascheuer et

al. [31].

22

The MILP model follows:470

max
∑
i∈J

∑
k∈K
|sik=1

wiyik
MW

+ 1
MZ

·

∑
k∈K

(bk − ak)−
∑
i∈J

∑
k∈K
|sik=1

(pi + δik)yik

 (23)

Subject to: ∑
k∈K
|sik=1

yik ≤ 1 i ∈ J (24)

∑
i∈J
|sik=1

piyik ≤ pmaxk k ∈ K (25)

∑
i∈J
|sik=1

wipiyik ≤ pwmaxk k ∈ K (26)

yik ≤ 0 (i, k) ∈ A1 (27)

yi1k + yi2k ≤ 1 (i1, i2, k) ∈ A2 (28)

yi1k + yi2k + yi3k ≤ 2 (i1, i2, i3, k) ∈ A3 (29)

yi1k + yi2k + yi3k + yi4k ≤ 3 (i1, i2, i3, i4, k) ∈ A4 (30)

yik ∈ {0, 1} i ∈ J, k ∈ K (31)

Where:

A1 = {(i, k)|i ∈ J, k ∈ K, sik = 1, ak + c0i + pi > li or ei + pi + ci0 > bk}

A2 = {(i1, i2, k)|i1, i2 ∈ J, k ∈ K, si1k, si2k = 1, (i1, k), (i2, k) /∈ A1, all possible sequences of tasks

i1 and i2 are infeasible for the technician k}
475

A3 = {(i1, i2, i3, k)|i1, i2, i3 ∈ J, k ∈ K, si1k, si2k, si3k = 1, (i1, k), (i2, k), (i3, k) /∈ A1, (i1, i2, k), (i1, i3, k),

(i2, i3, k) /∈ A2 and all possible sequences of tasks i1, i2 and i3 are infeasible for the technician k}

A4 = {(i1, i2, i3, i4, k)|i1, ..., i4 ∈ J, k ∈ K, si1k, ..., si4k = 1, (i1, k), ..., (i4, k) /∈ A1, (i1, i2, k), ..., (i3, i4, k) /∈

A2, (i1, i2, i3, k), ..., (i2, i3, i4, k) /∈ A3 and all possible sequences of tasks i1, i2, i3 e i4 are infeasible for

the technician k}480

Other models to obtain a stronger upper bound were tested, such as replacing integer vari-

ables with real ones in the original model (Section 2) or using intermediate models between the

23

models presented in this paper, but they did not show superior performance.

6. Numerical experiments485

This section describes the instances and presents the results obtained by the proposed ap-

proaches. Codes were written in C programming language and tests were conducted on a 2.93

GHz Intel(R) 870 with 16 GB of RAM memory. All instances and results are available at

http://www.pro.poli.usp.br/professores/dronconi/.

6.1. Instances490

A total of 1040 instances were generated in the experiments, with a considerable diversity of

the parameters that can impact on the behavior of the heuristics: geographical distribution of

customers, size of time windows of tasks, percentage of tasks with time windows, processing time,

priority of tasks, number of tasks and technicians. Four different geographical distributions of

the tasks were used: random uniform distribution (R), clustered distribution (C), semi-clustered495

distribution (RC), and radial (RAD) distribution. The first three distributions were suggested

by Solomon [32] and the last one is a new distribution proposal where there is a higher population

density in the central part of the city, which is reduced towards the outskirts of the city. For

each geographical distribution, 20 instances were generated for 13 different amounts (or cases)

of tasks and technicians. Table 3 shows the number of tasks and technicians for each case.500

Instance parameters were generated in the following range of discrete uniform distribution:

• Priority of tasks (wi): 1 (low), 2, . . . , 10 (high).

• Processing time of each task (pi): 30, 35, . . . , 120 minutes.

• Percentage of tasks with time windows: 25, 50, 75 or 100%.

• Beginning of time windows of tasks (ei): 7, . . . , 19 hours.505

• Size of time windows of tasks: 2, . . . , 8 hours.

• End of time windows of tasks (li): ei plus the size of the window.

24

Table 3: Dimension of the instances generated

Case #tasks (n) #technicians (m)

1 16 2

2 26 2

3 30 3

4 39 3

5 45 7

6 64 5

7 80 13

8 100 10

9 120 20

10 150 25

11 200 33

12 500 83

13 999 166

• Beginning of time windows of technicians (ak): 7, 7.5, 8, . . . , 12 hours.

• End of time windows of technicians (bk): ak + 9 hours.

• Skill of technician k to perform task i (sik): 0 or 1.510

• Travel time: all tasks are located in a region where the travel time between any two

locations is less than or equal to 1.5 hour.

Taillard’s random number generator and seeds (see [33]) were used to generate random

numbers for the discrete uniform distribution for the parameters described above. The radial

geographical distribution was obtained by a continuous uniform distribution, also generated by515

the system proposed by Taillard.

25

6.2. The MILP model

The MILP model presented in Section 2 was solved using the ILOG CPLEX software, version

12.6, with limited processing time of one hour. The optimum result was reached for 52 problems

in case 1, 10 problems in case 2, 6 problems in case 3, and 4 problems in case 4. In cases 5 to 7,520

the CPLEX software found feasible solutions for all instances, and in cases 8 to 13 no feasible

solutions were obtained.

Table 4 shows the percentage difference between the lower bound (LBcplex) and the upper

bound (UBcplex) of the objective function provided by the CPLEX software, i.e.:

Diff% = 100 · UBcplex − LBcplex
UBcplex

The first column identifies the case. The second, third and fourth columns present the min-525

imum, the average, and the maximum percentage difference in each case, respectively. Table 4

suggests that the difference between the lower and the upper bound depends on the ratio n
m (the

average difference is higher when the ratio is higher). Note that, for a similar ratio, the average

percentage difference grows as problem size increases. This behavior was expected because, as

mentioned in Section 1, the FTSP is a generalization of the vehicle routing problem with time530

windows, which is NP-hard.

Table 4: Percentage difference (Diff%) for each case

Case Min. Avg. Max.

1 0.0 5.2 25.8

2 0.0 33.3 50.6

3 0.0 24.9 37.5

4 0.0 38.2 51.6

5 0.0 11.9 20.7

6 0.0 42.0 52.8

7 1.0 20.8 33.7

26

6.3. Upper bounds

In order to measure the quality of the proposed upper bounds, the results of solving Model 1

(UB1) and Model 2 (UB2) were compared with an upper bound from the literature (UB0). This

upper bound was proposed by [9] and was obtained through the resolution of Model 1 without535

restriction (21) and the δ parameter. All models were solved using the software CPLEX 12.6

with a limited processing time of one hour.

For cases 1-4 (n < 40), a comparison with optimal solutions was also conducted. The MILP

model described in Section 2 was solved for these instances using the CPLEX solver with an

execution time limit of ten hours (starting from the best final solution obtained by the BRKGA540

versions). A complete enumeration was also applied aiming to achieve the maximum number of

optimal values. All instances of cases 1 and 2, 58 from case 3, and 18 from case 4, totaling 236

instances, were optimally solved.

Table 5 shows the average CPU time to solve the models that obtained UB0, UB1, and UB2,

the number of times that the best upper bound was given by the resolution of the analyzed model545

(#best), and the average percentage difference between the value of the upper bound (UB#)

(where # identifies the upper bound) and the optimal value, i.e.:

GAPOpt = 100 · Opt− UB#
Opt

(32)

The bold numbers in Table 5 and in the following tables indicate the best result of each

Table 5: Comparisons between the analysed upper bounds and the optimal values.

Case UB0 UB1 UB2

CPU (s) GAPOpt #best CPU (s) GAPOpt #best CPU (s) GAPOpt #best

1 0.2 -20.6 0 0.3 -10.7 3 0.3 -3.3 80

2 0.3 -28.4 0 0.3 -15.9 1 0.6 -8.0 79

3 0.4 -26.8 0 0.5 -15.6 0 1.0 -6.2 80

4 0.7 -36.0 0 1.0 -20.3 0 3.3 -9.2 80

Avg. 0.4 -27.9 0.5 -15.6 1.3 -6.7

27

Table 6: Comparisons between the proposed upper bounds and UB0.

Case UB0 UB1 UB2

CPU (s) #best CPU (s) DiffUB0 #best CPU (s) DiffUB0 #best

5 0.1 0 144.1 1.8 2 396.5 3.9 80

6 148.2 0 674.8 6.7 0 1086.0 11.9 80

7 0.2 0 10.8 1.2 16 152.3 1.8 80

8 1260.7 0 3326.5 4.4 0 1703.3 7.7 80

9 0.3 0 0.9 0.8 80 - - -

10 0.3 0 1.1 0.5 80 - - -

11 0.6 0 2.3 0.4 80 - - -

12 3.5 0 54.8 0.1 80 - - -

13 16.8 18 335.2 0.0 80 - - -

Avg. 159.0 505.6 1.8 834.5 6.3

row. As it can be seen, for all considered cases the upper bounds provided by the proposed

models were tighter than the one obtained using the model of the literature (UB0). It can also550

be observed that the upper bound provided by Model 2 is tighter than the one obtained using

Model 1.

For cases 5-13, a comparison among upper bounds was conducted. Table 6 presents the

average CPU time required to solve each model, the number of times each bound is the tighest

bound, and the average percentage difference between UB1 or UB2 and UB0 (DiffUB0). For555

cases 9-13, CPLEX was not able to solve Model 2, probably due to the significant increase in

the number of constraints 1. As expected, figures in this table shows that there is a trade-off

between the quality of the bound obtained and the computational effort required to compute

the bound. Model 2 delivers tighter bounds but cannot be solved when applied to instances of

cases 9-13; while Model 1 can be solved for all instances which deliver good quality bounds. It560

is worth noting that the bounds obtained by solving Model 1 are always better than or equal

1For this reason, in the resolution of cases 7 and 8 the restrictions (30) was excluded.

28

to UB0 with a reasonable running time. It must also be highlighted that, when considering the

640 instances for which UB0, UB1, and UB2 were successfully computed, the bound computed

by solving Model 2 was strictly the best bound in 618 instances.

6.4. Constructive heuristics565

The Cluster heuristic achieved the best results with the following parameters: µideal = 10,

tcluster = 12 minutes, and ntec = 0.8m. The heuristics STT and NT had no parameters to be

calibrated 2 The results of constructive heuristics were analyzed by the gap between the upper

bound (UB) and the solution value (SV) provided by the method being analyzed, i.e.:

GAPUB = 100 · UB − SV
UB

Table 7 shows the minimum, average, and standard deviation of GAPUB considering the 80570

instances of each case for the three proposed constructive heuristics and the heuristic developed

by Xu and Chiu [9], henceforth denoted by XC. The NT constructive heuristic is similar to the

constructive heuristic proposed by Xu and Chiu, but there are two differences: first, in Step 1,

the authors sort the tasks in order of decreasing ratio of priority per processing time (wi
pi

) and,

in case of a tie, the second criterion is the decreasing value of li−pi; secondly, there is no second575

decision criterion in Step 3.

Considering the average GAPUB, the proposed heuristics outperformed the XC heuristic in

all cases. The Cluster heuristic provided the best average GAPUB and the best average result

in 6 cases. For the two largest instances (with 500 and 999 tasks) in the STT heuristic, the

upper bound gaps were, on average, 3.5 and 2.6%: it is a noteworthy result, since the maximum580

run time of this constructive heuristics to solve an instance was 0.21 seconds. Regarding the

known optimal solutions for cases 1 to 4, the average GAPOpt (given by equation (32)) were

6.7% (STT), 6.6% (NT), 6.4% (Cluster), and 8.0% (XC). It should be highlighted that the STT

and Cluster heuristics achieved 36% of the best results among all constructive heuristics, while

NT achieved 29% and XC only 10%.585

2In calculating the parameter ρ, the time unit adopted was hours.

29

Table 7: Minimum (Min.), Average (Avg.), and Standard Deviation (σ) of GAPUB of the constructive heuristics

Case STT NT Cluster XC

Min. Avg. σ Min. Avg. σ Min. Avg. σ Min. Avg. σ

1 0.2 8.1 5.1 0.2 7.8 4.5 0.2 8.4 4.6 0.2 9.7 4.6

2 0.3 13.3 4.9 0.3 13.5 4.5 0.3 13.0 5.2 0.4 14.2 5.3

3 0.2 12.5 4.1 1.3 12.6 4.0 1.3 11.9 4.0 3.9 13.5 3.9

4 4.7 15.8 4.4 1.3 15.4 4.5 1.3 15.7 4.9 6.1 17.8 5.1

5 2.4 9.6 3.1 1.6 9.1 3.0 2.8 9.2 2.7 1.6 10.9 3.1

6 4.7 17.7 3.8 4.6 17.7 3.7 4.6 17.2 3.7 9.9 18.9 3.3

7 4.0 8.4 2.6 2.5 8.2 2.8 2.7 8.3 3.0 3.8 9.8 3.1

8 11.0 16.7 2.9 9.7 16.4 2.7 10.1 16.1 2.8 10.3 17.6 3.1

9 2.3 7.1 2.9 1.3 6.8 2.9 2.5 6.9 2.9 2.5 8.5 3.3

10 1.5 6.2 2.6 1.6 6.2 2.7 1.9 6.2 2.6 2.1 7.5 3.3

11 1.1 6.0 3.2 1.0 6.0 2.9 1.3 5.7 2.9 1.7 7.2 3.3

12 0.8 3.5 2.3 1.0 3.9 2.2 0.9 3.8 2.2 1.5 4.7 2.6

13 0.3 2.6 2.3 0.6 3.2 2.2 0.5 3.0 2.2 0.9 3.8 2.5

Avg. 1-4 (%) 1.3 12.4 4.6 0.8 12.3 4.4 0.8 12.3 4.7 2.6 13.8 4.7

Avg. 5-13 (%) 3.1 8.6 2.8 2.7 8.6 2.8 3.0 8.5 2.8 3.8 9.9 3.1

6.5. BRKGA

6.5.1. Parameter calibration

Initially, the parameters of the BRKGA should be set, namely: elite group size, number

of mutant solutions, probability of the parameterized crossover, population size, and maximum

number of generations. Based on Gonçalves and Resende [27], the following parameter values590

were analyzed:

• elite group size (ne): 15%, 20%, and 25% of the population.

• new mutant solutions (nm): 5%, 10%, and 15% of the population.

• probability of the parametrized crossover (pe): 50%, 60%, 70%, and 80%.

30

• population size (np): up to 1500 chromosomes.595

Several tests were conducted to calibrate the degree of similarity (DS). The best results were

obtained with an initial value (DS0), which increased linearly over generations (very similar

solutions are accepted in the last generations). The parameterDS0 was set considering candidate

values ranging from 50% to 90%.

Table 8: Calibrated parameters of the BRKGA versions

BRKGA-STT BRKGA-Cluster BRKGA-A

ne 15% 25% 15%

nm 15% 15% 10%

pe 60% 60% 70%

DS0 80% 60% 55%

All BRKGA versions with different combinations of parameter values were applied to 104600

instances (10% of the instances of each case). Table 8 shows the configuration of ne, nm, pe, and

DS0 that provided the best results for each BRKGA. The population size (np) adopted was 1000

(for cases 1 to 11), 500 (case 12), and 200 (case 13). Note that, as the problem size increases,

the cost of evaluation and manipulation of each chromosome increases significantly. Due to this

fact, the np value for cases 12 and 13 was limited to guarantee an acceptable execution time.605

Finally, the maximum number of generations was identified for each BRKGA version to reach

“convergence” for all tested instances. The convergence of the BRKGA was characterized as

the lack of improvement (or an improvement smaller than 0.01%) in the last generations. In

Appendix A, Table A.11 presents these values for each BRKGA.

Regarding the elite population diversification, Figure 1 illustrates the BRKGA performance

using the usual elite set and the elite set updated by the similarity measure. The average

DiffCH of eight instances in case 8 (with 100 tasks and 10 technicians) is presented, where:

DiffCH = 100 · BR− CH
CH

(33)

where BR and CH are the solution values obtained by the BRKGA and Cluster heuristics,610

respectively. Figure 1(a) shows that the average DiffCH increased from 7.3% to 10.5% in the

31

0

2

4

6

8

10

12

0 25 50 75 100 125 150 175 200 225 250

time (s)

Diff CH

Elite with similarity measure Usual elite

(a)

0

2

4

6

8

10

12

0 25 50 75 100 125 150 175 200 225 250

time (s)

Diff CH

Elite with similarity measure Usual elite

(b)

Figure 1: Performance of the BRKGA with the similarity measure and the usual elite: a) BRKGA-A; b) BRKGA-

STT.

BRKGA-A using the similarity measure. Likewise, in Figure 1(b), the average improvement

of BRKGA-STT increased from 10.8% to 11.4%. Despite this smaller improvement, it should

be observed that this version of the BRKGA-STT continues to improve the solution after 125

seconds, unlike the BRKGA-STT with usual elite. The behavior of the similarity measure in615

the BRKGA-Cluster was similar to BRKGA-STT (the average DiffCH increased from 10.9%

to 11.0%) and its chart was omitted.

The performance of the similarity measure was analyzed by an experiment involving 140

instances with the number of tasks ranging from 45 to 200 (for cases 5 to 11, respectively). All

geographical distributions were considered: R, C, RC and RAD. On average, BRKGAs that620

used the similarity measure improved the results of the BRKGAs with traditional elite by 2%

(BRKGA-A), 0.3% (BRKGA-STT), and 0.2% (BRKGA-Cluster). This analysis can be improved

by calculating the number of instances where this new version of BRKGA obtained strictly better

results than BRKGA for the traditional elite: 100% (BRKGA-A), 79% (BRKGA-STT), and 71%

(BRKGA-Cluster). Therefore, it was concluded that the similarity function improved the results625

of all BRKGA versions, especially BRKGA-A, which had a higher premature convergence tax.

6.5.2. Performance of the BRKGA

To compare the BRKGA versions proposed here, a prefixed time (limit time) that would

be sufficient for all BRKGAs to reach the convergence was adopted as the stopping criterion.

32

Table 9: Comparisons among the BRKGA values and the optimal values

Case # Opt BRKGA-STT BRKGA-Cluster BRKGA-A

#Opt. GAPOpt #Opt. GAPOpt #Opt. GAPOpt

1 80 79 0.01 79 0.01 79 0.01

2 80 79 0.01 78 0.60 77 0.78

3 58 58 58 56 0.36

4 18 18 17 0.02 18

Total (Avg.) 236 234 0.01 232 0.31 230 0.51

The last column of Table A.11 shows the limit time applied for each case. All BRKGA versions630

were run once on each instance [34, 35].

The average improvement of the metaheuristics in relation to the best constructive heuristic,

Cluster, was 6.0% by BRKGA-STT and BRKGA-Cluster and 5.5% by BRKGA-A.

A comparative study was conducted with optimal solutions through the analysis of the

gap of optimality presented by each heuristic. Considering the heuristic methods, this gap is635

calculated using equation (32). Table 9 shows the number of optimal solutions (#Opt.) for

each case achieved by the exact methods and by the BRKGA versions and the average GAPOpt
considering only the instances for which the optimal solution was not achieved by the heuristic

method. As shown in last line of this table, BRKGA-STT and BRKGA-Cluster achieved 99%

and 98% of the optimal solutions, respectively, and BRKGA-STT obtained the smallest average640

GAPOpt for the remaining instances (0.01%).

For medium- and large-sized cases, the quality of heuristic solutions was evaluated through a

comparison with the best upper bounds, as it can be seen in Table 10. Columns 2–4 of the table

show, respectively, the minimum, average, and standard deviation of GAPUB of the results of

BRKGA-STT; the following columns show the results for the BRKGA-Cluster and BRKGA-A;645

and the last three columns present, respectively, the minimum, average, and standard deviation

of GAPUB considering the known optimum values (italic numbers). The bold numbers in Table

10 indicate the best average among all BRKGA versions. Analyzing the results of BRKGA-

33

Table 10: Average (Avg.), Minimum (Min.), and Standard Deviation (σ) GAPUB of the heuristic methods and of

the known optimal values

Case BRKGA-STT BRKGA-Cluster BRKGA-A Optimum

Min. Avg. σ Min. Avg. σ Min. Avg. σ Min. Avg. σ

1 0.1 3.1 2.5 0.1 3.1 2.5 0.1 3.1 2.5 0.1 3.1 2.5

2 0.2 7.3 3.1 0.2 7.3 3.1 0.2 7.3 3.1 0.2 7.3 3.1

3 0.1 5.9 2.7 0.1 5.9 2.7 0.1 5.9 2.7 0.1 5.8a 2.7

4 0.1 8.6 2.9 0.1 8.6 2.9 0.1 8.6 2.9 0.1 8.3b 3.1

5 0.1 2.9 1.4 0.1 2.9 1.5 0.1 3.2 1.5 - - -

6 0.1 9.6 2.5 0.1 9.6 2.5 0.1 9.8 2.6 - - -

7 0.0 2.5 1.3 0.0 2.4 1.3 0.0 3.0 1.4 - - -

8 1.7 8.6 2.1 1.1 8.4 2.2 2.6 9.2 2.1 - - -

9 0.0 1.9 1.2 0.0 1.8 1.2 0.5 2.7 1.4 - - -

10 0.0 1.7 1.1 0.0 1.6 1.1 0.4 2.6 1.3 - - -

11 0.2 2.0 1.5 0.2 2.0 1.5 0.5 3.0 1.8 - - -

12 0.0 1.7 1.3 0.2 1.9 1.5 0.3 2.6 1.7 - - -

13 0.0 1.7 1.8 0.1 2.2 1.9 0.3 2.4 2.1 - - -

Avg. 1-4 (%) 0.1 6.2 2.8 0.1 6.2 2.8 0.1 6.2 2.8 0.1 6.1 2.8

Avg. 5-13 (%) 0.2 3.6 1.6 0.2 3.6 1.6 0.5 4.3 1.8 - - -
a refers to the average of 58 instances.
b refers to the average of 18 instances.

STT and BRKGA-Cluster, in almost all small-sized cases the minimum, average, and standard

deviation of GAPUB were similar to results of the optimal value, as expected. For cases 5 to 13,650

the average GAPUB of these methods is 3.6%, suggesting a good performance of these BRKGA

versions. Observe that the medium- and large-sized cases can be grouped into two categories:

low ratio (6 to 8) and high ratio of tasks per technician (10 to 13). In the first group (cases 5,

7, 9, 10, 11, 12, and 13), the average GAPUB is 2.1% for BRKGA-STT and BRKGA-Cluster,

while an average GAPUB of 9.1% and 9.0%, respectively, was obtained for the second group655

(cases 6 and 8). This fact is probably related to the quality of the upper bound when this ratio

34

increases. In the instances where the optimum value is known, problems with this ratio greater

than or equal to 10 (cases 2 to 4) presented an average gap from the optimal solution equal to

7.1%, while problems with lower ratio (case 1) showed an average gap of 3.1%.

It should be highlighted that other versions of BRKGA were developed: based on the NT660

(Nearest Technician) constructive heuristic, using complete enumerations to find the best route

for each technician, applying local search to improve the route of each technician, etc. The

results of these other versions were omitted, because they did not present superior performance

compared to the three versions described in this paper. Another aspect that should be mentioned

is that BRKGA showed similar performance in four different geographical distributions of tasks665

and in different settings of other problem parameters (size of time windows, percentage of tasks

with time windows, etc.), i.e., on average, different problem parameters have no great impact

on the results.

Aiming to compare the proposed metaheuristic with other methods from the literature, the

performance of the BRKGA-STT when applied to the problem addressed by Kovacs et al. [4]670

was analyzed. In [4] an Adaptive Large Neighborhood Search (ALNS) heuristic was proposed

to solve a parallel problem that contains tasks with identical priority but with different time

windows. Moreover, in [4] the objective function intends to minimize the costs of displacement

and outsourcing. Note that the minimization of outsourcing cost can be understood as the

maximization of total priority of the performed tasks; while the idle time of the technicians675

at the end of the day can be seen as the minimization of displacement cost. However, minor

adjustments were made to the STT decoder in order to tackle the different objective function

being considered. In Step 2, when analyzing the insertion of a task into a given technician’s

route, the position of the task is given by the position that implies the shortest total travel

time. Moreover, in Step 3, where it is determined in which route the task is actually inserted,680

the heuristic selects the technician’s route with the smallest increase in displacement cost. The

numerical experiments were conducted on a 2.93 GHz Intel(R) E7500 with 4 GB of RAM

memory.

We considered all “no team” instances from [4] that are instances to which our approach

applies, i.e. instances in which tasks can be performed by a single technician. Namely, we685

35

considered the sets “small”, “complete”, and “reduced” that have 35, 36, and 36 instances,

respectively. The term “complete” refers to instances where, due to the large number of available

technicians, all tasks can be performed without the use of outsourcing. On the other hand,

“reduced” means that, due the limited number of technicians, it is not likely that all tasks will

be scheduled (see [4] for details). The BRKGA-STT was applied five times to each instance.690

The average solution value was compared with the optimal value for the instances in the “small”

data set and, for the remaining instances, with the average value found by the ALNS heuristic.

The detailed results for each instance are given in Appendix B (Tables B.12, B.13, and

B.14). In the instances of the data set “small”, the BRKGA-STT found the optimal solution in

all runs, outperforming the ALNS heuristic, which achieved the optimal solutions in all five runs695

only for 71.43% of the instances (as shown in Table 6 of [4, p.591]). The average run times per

instance of the ALNS and BRKGA-STT were 3.72 and 2.99 seconds, respectively. Regarding

the “complete” and the “reduced” data sets, the average objective function values found by

BRKGA-STT were 1332.32 and 3528.19 (with average run times 108.91 and 116.82 seconds,

respectively). As it can be seen in Table 3 (column from 6 to 9) of [4, p.589], the BRKGA-700

STT presented a competitive performance when compared to eight different versions of the LNS

(large neighborhood search) that include the ALNS method. The obtained results are 2.78% and

0.91% above the average objective function value achieved by the ALNS (see Tables 13 and 14

in [4, pp.596–597]). This better performance of the BRKGA-STT in the “reduced” data set was

expected since the proposed algorithm was originally designed for a problem where there is a705

restricted number of technicians and, consequently, a selection of which tasks will be executed

will be required. It is important to observe that the numerical results being compared were run

on different machines, using probably different compilers and compiling options.

7. Conclusion

This paper presented constructive heuristics and three customized Biased Random Key Ge-710

netic Algorithm for the Field Technician Scheduling Problem (FTSP).

For large instances (500 and 999 tasks), the best constructive heuristics provided beneficial

results with reduced computational effort. This good performance can be attributed to the

36

fact that constructive heuristics explore specific characteristics of the FTSP (task priorities,

geographic clusters, technician skills, and travel times) and demonstrate the potential of these715

heuristics to solve larger problems.

The best customized Biased Random Key Genetic Algorithms, BRKGA-STT and BRKGA-

Cluster, found 99% and 98% of the optimal solutions for small instances, respectively. For

medium- and large-sized cases, the average results were within 3.6% of the upper bound. The fact

that these two BRKGA versions outperformed BRKGA-A, the most random version, indicates720

that the use of more elaborate decoders is valid.

The similarity measure of the elite set has reached the desired effect by preventing premature

convergence. The average results of all BRKGA versions was improved (up to 2% on average) and

the number of instances where the BRKGAs with the similarity measure obtained strictly better

results than the BRKGAs with the traditional elite ranged between 100% and 71%, depending725

on the BRKGA version. It should be highlighted that the most significant improvements were

observed in the BRKGA-A version, which had a critical problem of premature convergence.

As future work, we believe that the similarity measure can be used to improve the perfor-

mance of customized BRKGAs for other combinatorial problems.

Acknowledgements730

The authors would like to thank the anonymous referees whose comments helped a lot to

improve this paper. This research has been partially supported by FAPESP (Grants 2010/10133-

0 and 2013/07375-0) and CNPq (Grant 141876/2012-3).

37

Appendix A. Number of generations and stop criterion

Table A.11: Number of generations required to reach convergence (BRKGAs with the similarity measure of the

elite set) and the limit time (stop criterion) for each case.

Case Number of generations limit time

BRKGA-STT BRKGA-Cluster BRKGA-A (seconds)

1 10 10 10 3

2 20 30 20 5

3 110 100 150 10

4 200 200 1000 50

5 400 500 1300 75

6 400 600 1400 80

7 400 700 2200 180

8 400 700 2200 250

9 400 1100 4400 480

10 500 1000 5000 600

11 500 1000 5000 900

12 300 200 8000 1800

13 300 200 11000 3600

Appendix B. Detailed results for the instances proposed by Kovacs735

The average results obtained by the analyzed methods for the data sets “small”, “complete”,

and “reduced” are given in Tables B.12, B.13, and B.14, respectively. In these tables, the first

column presents the names of the instances; the second column, the average solution values

obtained by ALNS proposed by Kovacs et al. (2012); the third column, the average solution

values found by BRKGA; and in the last column the average CPU times are reported. The740

bold numbers in Table B.12 refer to the optimal values. In Tables B.13 and B.14, the fourth

column shows the percentage difference between the average objective function value obtained

38

by ALNS (foA) and the average objective function value found by BRKGA (foB) (Diffk% =

100 · foB−foA
foA

).

Table B.12: Performance of the ALNS and BRKGA in small no-team instances
Instance ALNS BRKGA

Avg. Avg. CPU (s)
C101 5x4 271.70 271.70 0.26
C101 6x6 927.35 927.35 0.00
C101 7x4 789.08 789.08 0.07
C103 7x4 671.06 671.06 32.31
C101 5x4 838.11 830.00 15.49
C101 6x6 1181.31 1154.84 12.22
C101 7x4 1367.75 1356.54 8.51
C201 5x4 863.08 863.08 0.00
C201 6x6 1217.10 1217.10 0.00
C201 7x4 738.35 738.35 0.00
C203 5x4 835.83 835.83 0.04
C203 6x6 930.60 930.60 0.03
C203 7x4 684.98 684.98 0.00
C201 5x4 859.54 859.54 2.82
C201 6x6 1203.93 1203.93 0.36
C201 7x4 1312.21 1312.21 0.16
R101 5x4 2195.04 2195.04 0.06
R101 6x6 2977.63 2857.05 0.06
R101 7x4 2447.74 2447.74 0.03
R101 5x4 4540.34 4507.87 10.57
R101 6x6 5362.77 5190.32 10.63
R101 7x4 4573.12 4463.80 1.73
R201 5x4 1092.41 1091.07 0.17
R201 6x6 1377.42 1377.42 0.00
R201 7x4 959.51 959.51 0.02
R203 7x4 849.47 849.47 0.13
R201 5x4 1107.51 1107.51 3.34
R201 6x6 1647.70 1647.70 3.34
R201 7x4 1553.23 1553.23 2.00
RC101 5x4 950.81 862.21 0.07
RC101 6x6 1557.44 1361.80 0.02
RC101 7x4 1669.63 1669.63 0.03
RC201 5x4 465.25 465.25 0.03
RC201 6x6 1228.89 1228.89 0.11
RC201 7x4 967.60 967.60 0.07

Avg. 1480.53 1469.98 2.99

39

Table B.13: BRKGA applied to no-team/reduced instances
Instance ALNS BRKGA

Avg. Avg. Diffk% CPU (s)
C101 5x4 noTeam 5733.75 5763.44 0.52 74.41
C103 5x4 noTeam 2782.20 2971.30 6.80 156.49
C201 5x4 noTeam 2755.52 2755.52 0.00 72.00
C203 5x4 noTeam 2392.50 2386.03 -0.27 101.77
R101 5x4 noTeam 5895.38 5636.46 -4.39 90.35
R103 5x4 noTeam 1845.25 1932.31 4.72 106.10
R201 5x4 noTeam 2854.30 2869.57 0.53 134.29
R203 5x4 noTeam 2332.23 2332.27 0.00 104.00
RC101 5x4 noTeam 5164.84 5129.91 -0.68 99.82
RC103 5x4 noTeam 2348.06 2524.94 7.53 152.91
RC201 5x4 noTeam 3091.67 3096.08 0.14 140.42
RC203 5x4 noTeam 2540.35 2536.76 -0.14 154.79
C101 6x6 noTeam 7762.94 7755.07 -0.10 100.77
C103 6x6 noTeam 5028.83 5084.84 1.11 139.38
C201 6x6 noTeam 3299.56 3378.22 2.38 43.62
C203 6x6 noTeam 2465.90 2471.91 0.24 144.17
R101 6x6 noTeam 6152.29 6170.52 0.30 130.97
R103 6x6 noTeam 2329.25 2330.16 0.04 121.08
R201 6x6 noTeam 3536.70 3615.64 2.23 146.89
R203 6x6 noTeam 2446.18 2463.73 0.72 155.31
RC101 6x6 noTeam 5466.44 5508.04 0.76 131.78
RC103 6x6 noTeam 2349.57 2586.16 10.07 146.97
RC201 6x6 noTeam 4519.95 4619.96 2.21 153.52
RC203 6x6 noTeam 2673.72 2711.80 1.42 148.66
C101 7x4 noTeam 5257.90 5275.30 0.33 108.62
C103 7x4 noTeam 2117.44 2091.45 -1.23 152.86
C201 7x4 noTeam 2779.37 2776.38 -0.11 55.86
C203 7x4 noTeam 2282.15 2288.40 0.27 120.31
R101 7x4 noTeam 5381.35 5336.78 -0.83 85.25
R103 7x4 noTeam 2215.84 2210.41 -0.24 109.69
R201 7x4 noTeam 2679.38 2671.42 -0.30 118.49
R203 7x4 noTeam 2209.80 2201.93 -0.36 124.95
RC101 7x4 noTeam 5799.77 5547.86 -4.34 64.77
RC103 7x4 noTeam 2674.54 2753.69 2.96 85.46
RC201 7x4 noTeam 2936.28 2914.19 -0.75 101.45
RC203 7x4 noTeam 2285.17 2316.57 1.37 127.17

Avg. 3510.73 3528.19 0.91 116.82

Table B.14: BRKGA applied to no-team/complete instances
Instance ALNS BRKGA

Avg. Avg. Diffk% CPU (s)
C101 5x4 noTeam 1111.08 1201.68 8.15 92.32
C103 5x4 noTeam 1037.33 1124.55 8.41 138.14
C201 5x4 noTeam 1180.93 1157.56 -1.98 50.05
C203 5x4 noTeam 1049.30 1092.09 4.08 79.35
R101 5x4 noTeam 1685.85 1718.85 1.96 130.60
R103 5x4 noTeam 1249.91 1315.80 5.27 114.57
R201 5x4 noTeam 1448.93 1450.12 0.08 131.01
R203 5x4 noTeam 1106.12 1111.87 0.52 138.59
RC101 5x4 noTeam 1716.07 1737.49 1.25 109.89
RC103 5x4 noTeam 1354.11 1481.46 9.40 127.88
RC201 5x4 noTeam 1607.25 1605.69 -0.10 74.26
RC203 5x4 noTeam 1166.50 1180.38 1.19 81.83
C101 6x6 noTeam 1004.82 1066.40 6.13 102.11
C103 6x6 noTeam 897.86 1076.75 19.92 143.52
C201 6x6 noTeam 821.55 821.54 0.00 32.58
C203 6x6 noTeam 703.10 689.68 -1.91 95.80
R101 6x6 noTeam 1667.43 1677.54 0.61 154.93
R103 6x6 noTeam 1231.49 1249.34 1.45 137.30
R201 6x6 noTeam 1270.26 1300.61 2.39 123.44
R203 6x6 noTeam 951.84 949.89 -0.20 146.46
RC101 6x6 noTeam 1683.96 1703.77 1.18 145.63
RC103 6x6 noTeam 1310.95 1378.68 5.17 150.37
RC201 6x6 noTeam 1403.95 1427.44 1.67 112.59
RC203 6x6 noTeam 1016.71 1034.83 1.78 145.11
C101 7x4 noTeam 1398.95 1456.84 4.14 94.61
C103 7x4 noTeam 1239.22 1309.31 5.66 128.69
C201 7x4 noTeam 1282.18 1256.30 -2.02 29.84
C203 7x4 noTeam 1151.27 1153.28 0.17 64.19
R101 7x4 noTeam 1793.95 1826.76 1.83 105.46
R103 7x4 noTeam 1375.09 1412.75 2.74 137.37
R201 7x4 noTeam 1410.90 1429.36 1.31 79.23
R203 7x4 noTeam 1166.94 1171.01 0.35 126.38
RC101 7x4 noTeam 1844.37 1897.61 2.89 133.94
RC103 7x4 noTeam 1455.33 1528.59 5.03 86.57
RC201 7x4 noTeam 1701.25 1719.80 1.09 113.91
RC203 7x4 noTeam 1241.65 1247.77 0.49 62.41

Avg. 1298.29 1332.32 2.78 108.91

References745

[1] C. E. Cortés, M. Gendreau, L. M. Rousseau, S. Souyris, A. Weintraub, Branch-and-price

and constraint programming for solving a real-life technician dispatching problem, European

Journal of Operational Research 238 (1) (2014) 300–312.

[2] H. Tang, E. Miller-Hooks, R. Tomastik, Scheduling technicians for planned maintenance

of geographically distributed equipment, Transportation Research Part E: Logistics and750

Transportation Review 43 (5) (2007) 591–609.

[3] Y. Li, A. Lim, B. Rodrigues, Manpower allocation with time windows and job-teaming

constraints, Naval Research Logistics (NRL) 52 (4) (2005) 302–311.

[4] A. A. Kovacs, S. N. Parragh, K. F. Doerner, R. F. Hartl, Adaptive large neighborhood

search for service technician routing and scheduling problems, Journal of Scheduling 15 (5)755

(2012) 579–600.

[5] H. Hashimoto, S. Boussier, M. Vasquez, C. Wilbaut, A grasp-based approach for technicians

and interventions scheduling for telecommunications, Annals of Operations Research 183 (1)

(2011) 143–161.

[6] J.-F. Cordeau, G. Laporte, F. Pasin, S. Ropke, Scheduling technicians and tasks in a760

telecommunications company, Journal of Scheduling 13 (4) (2010) 393–409.

[7] E. Tsang, C. Voudouris, Fast local search and guided local search and their application to

british telecom’s workforce scheduling problem, Operations Research Letters 20 (3) (1997)

119–127.

[8] V. Pillac, C. Gueret, A. L. Medaglia, A parallel matheuristic for the technician routing and765

scheduling problem, Optimization Letters 7 (7) (2013) 1525–1535.

[9] J. Xu, S. Y. Chiu, Effective heuristic procedures for a field technician scheduling problem,

Journal of Heuristics 7 (5) (2001) 495–509.

42

[10] A. Dohn, E. Kolind, J. Clausen, The manpower allocation problem with time windows and

job-teaming constraints: A branch-and-price approach, Computers & Operations Research770

36 (4) (2009) 1145–1157.

[11] D. L. Overholts II, J. E. Bell, M. A. Arostegui, A location analysis approach for military

maintenance scheduling with geographically dispersed service areas, Omega 37 (4) (2009)

838–852.

[12] J. Valente, J. F. Gonçalves, A genetic algorithm approach for the single machine scheduling775

problem with linear earliness and quadratic tardiness penalties, Computers & Operations

Research 36 (10) (2009) 2707–2715.

[13] M. G. Resende, R. F. Toso, J. F. Gonçalves, R. M. Silva, A biased random-key genetic

algorithm for the steiner triple covering problem, Optimization Letters 6 (4) (2012) 605–

619.780

[14] J. S. Brandao, T. F. Noronha, M. G. Resende, C. C. Ribeiro, A biased random-key genetic

algorithm for single-round divisible load scheduling, International Transactions in Opera-

tional Research 22 (2015) 823–839.

[15] J. F. Gonçalves, P. S. A. Sousa, A genetic algorithm for lot sizing and scheduling under

capacity constraints and allowing backorders, International Journal of Production Research785

49 (9) (2011) 2683–2703.

[16] A. Duarte, R. Mart́ı, M. Resende, R. Silva, Improved heuristics for the regenerator location

problem, International Transactions in Operational Research 21 (4) (2014) 541–558.

[17] C. E. de Andrade, R. F. Toso, M. G. Resende, F. K. Miyazawa, Biased random-key genetic

algorithms for the winner determination problem in combinatorial auctions, Evolutionary790

computation 23 (2) (2015) 279–307.

[18] J. F. Gonçalves, M. G. Resende, A biased random key genetic algorithm for 2d and 3d bin

packing problems, International Journal of Production Economics 145 (2) (2013) 500–510.

43

[19] E. Lalla-Ruiz, J. L. González-Velarde, B. Melián-Batista, J. M. Moreno-Vega, Biased ran-

dom key genetic algorithm for the tactical berth allocation problem, Applied Soft Comput-795

ing 22 (2014) 60–76.

[20] J. F. Gonçalves, M. G. Resende, A biased random-key genetic algorithm for the unequal

area facility layout problem, European Journal of Operational Research 246 (1) (2015)

86–107.

[21] L. S. Buriol, M. J. Hirsch, P. M. Pardalos, T. Querido, M. G. Resende, M. Ritt, A biased800

random-key genetic algorithm for road congestion minimization, Optimization Letters 4 (4)

(2010) 619–633.

[22] T. F. Noronha, M. G. Resende, C. C. Ribeiro, A biased random-key genetic algorithm for

routing and wavelength assignment, Journal of Global Optimization 50 (3) (2011) 503–518.

[23] L. Morán-Mirabal, J. González-Velarde, M. Resende, Randomized heuristics for the family805

traveling salesperson problem, International Transactions in Operational Research 21 (1)

(2014) 41–57.

[24] A. Grasas, H. Ramalhinho, L. S. Pessoa, M. G. Resende, I. Caballé, N. Barba, On the

improvement of blood sample collection at clinical laboratories, BMC Health Services Re-

search 14 (1) (2014) 12.810

[25] D. E. Goldberg, J. H. Holland, Genetic algorithms and machine learning, Machine Learning

3 (2) (1989) 95–99.

[26] J. C. Bean, Genetic algorithms and random keys for sequencing and optimization, ORSA

Journal on Computing 6 (2) (1994) 154–160.

[27] J. F. Gonçalves, M. G. Resende, Biased random-key genetic algorithms for combinatorial815

optimization, Journal of Heuristics 17 (5) (2011) 487–525.

[28] J. F. Gonçalves, J. J. de Magalhães Mendes, M. G. Resende, A hybrid genetic algorithm

for the job shop scheduling problem, European Journal of Operational Research 167 (1)

(2005) 77–95.

44

[29] J. Gonçalves, M. Resende, R. Toso, An experimental comparison of biased and unbiased820

random-key genetic algorithms, Pesquisa Operacional 34 (2014) 143–164.

[30] V. A. Armentano, D. P. Ronconi, Tabu search for total tardiness minimization in flowshop

scheduling problems, Computers & Operations Research 26 (3) (1999) 219–235.

[31] N. Ascheuer, M. Fischetti, M. Grötschel, Solving the asymmetric travelling salesman prob-

lem with time windows by branch-and-cut, Mathematical Programming 90 (3) (2001) 475–825

506.

[32] M. M. Solomon, Algorithms for the vehicle routing and scheduling problems with time

window constraints, Operations Research 35 (2) (1987) 254–265.

[33] E. Taillard, Benchmarks for basic scheduling problems, European Journal of Operational

Research 64 (2) (1993) 278–285.830

[34] M. Birattari, On the estimation of the expected performance of a metaheuristic on a class

of instances, Tech. rep. (2004).

[35] M. S. Hussin, T. Stützle, Tabu search vs. simulated annealing as a function of the size

of quadratic assignment problem instances, Computers & Operations Research 43 (2014)

286–291.835

45

	Introduction
	Mixed Integer Linear Programming Model
	Constructive Heuristics
	Shortest travel time (STT)
	Nearest technician (NT)
	Cluster

	Biased Random Key Genetic Algorithm (BRKGA)
	Proposed BRKGA for the FTSP
	BRKGA-STT:
	BRKGA-Cluster:
	BRKGA-A: assigning tasks and building random routes

	Generation of upper bounds
	Model 1: Simplifying travel times and time windows
	Model 2: Limiting the working hours of technicians and excluding unfeasible combinations of tasks

	Numerical experiments
	Instances
	The MILP model
	Upper bounds
	Constructive heuristics
	BRKGA
	Parameter calibration
	Performance of the BRKGA

	Conclusion
	Number of generations and stop criterion
	Detailed results for the instances proposed by Kovacs

