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Abstract 

This work presents a biased random-key genetic algorithm (BRKGA) to solve the electric distribution 
network reconfiguration problem (DNR). The DNR is one of the most studied combinatorial optimization 
problems in power system analysis. Given a set of switches of an electric network that can be opened or 
closed, the objective is to select the best configuration of the switches to optimize a given network 
objective while at the same time satisfying a set of operational constraints. The good performance of 
BRKGAs on many combinatorial optimization problems and the fact that it has never been applied to solve 
DNR problems are the main motivation for this research. A BRKGA is a variant of random-key genetic 
algorithms, where one of the parents used for mating is biased to be of higher fitness than the other 
parent. Solutions are encoded by using random keys, which are represented as vectors of real numbers in 
the interval (0,1), thus enabling an indirect search of the solution inside a proprietary search space. The 
genetic operators do not need to be modified to generate only feasible solutions, which is an exclusive 
task of the decoder of the problem. Tests were performed on standard distribution systems used in DNR 
studies found in the technical literature and the performance and robustness of the BRKGA were 
compared with other GA implementations. 
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1. Introduction 

Combinatorial optimization problems that involve a large finite number of alternatives arise in many 
scientific research fields, industry and government. In this type of problem, the number of combinations 
to be tested to find an optimal solution often grows exponentially with the size of the problem, which 
makes complete enumeration of solutions infeasible in real-world problems. The electric power systems 
research field has many problems which belong to the combinatorial optimization field, such as unit 
commitment (Roque et al. 2014), transmission network design (Faria Jr. et al. 2005), and distribution 
network reconfiguration (DNR) (Civanlar et al. 1988). DNR belongs to the class of network design problems 
which include transportation problems, computer network restoration and telecommunication network 
design (Delbem et al. 2004). These problems are generally NP-Hard.  

Electric power distribution systems are located after the transmission and sub-transmission systems and 
are generally structured in mesh but operated in radial configuration to reduce short-circuit fault levels 
and to facilitate the implementation of effective coordination and protection schemes (Swarnkar et al. 
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2011). The problem consists in altering the open or closed status of normally closed (NC) sectionalizing 
switches and normally open (NO) tie-line switches to optimize a given objective of the network while 
satisfying various operational constraints and maintaining the radiality of the distribution system. The 
radiality constraint should be satisfied without islanding of any node(s). This fact makes the problem 
extremely complicated and computationally hard. Fig. 1 shows a distribution system composed of 14 
nodes or buses where node 1 represents the substation node and the other nodes represent electrical 
loads. All the power to attend the loads come from node 1. Dark lines represent the NC switches and 
dotted lines represent the NO switches. It can be seen that the system is radial and that all loads are 
connected to bus 1 and are, thus, energized. 

 

 

Fig. 1 14-node distribution network 

 

Usually, DNR studies are used for minimization of electric power losses in the network, service restoration 
after power outages, load balancing and planning studies. Network reconfiguration for loss reduction is 
the most explored version of DNR. It is a highly complex combinatorial, nondifferentiable and constrained 
nonlinear mixed integer optimization problem, due to the high number of switching elements in a 
distribution network, and to the nonlinear characteristics of the constraints used to model the electrical 
behavior of the system (Carreño et al. 2008). 

The main methods used for solving the DNR for loss reduction can be separated into two main groups: 
exact mathematical methods and approximate methods. Very large real-world problems pose serious 
computational challenges for exact methods despite recent advances in finding provably optimal solutions 
to combinatorial optimization problems using methods such as cutting planes, dynamic programming and 
branch and bound techniques (Gonçalves and Resende 2010). Regarding DNR, this type of algorithm is 
applied only to simplified models of the electrical network with an approximated loss function as well. For 
the ac network model, there is no exact representation of the losses in the exact methods. Approximate 
methods, on the other hand, include the class of heuristic and metaheuristic methods which cannot prove 
the optimality of the solution found, but can tackle big and complex real-world problems efficiently. These 
methods can produce many high-quality solutions in reduced computational time and find the optimal 
solution most of the time (Yang 2010). The majority of methods applied to the DNR for loss reduction 
belong to the metaheuristic class of methods. A metaheuristic applies and coordinates more than one 
heuristic, such as local search, using the strengths of each one to efficiently explore the search space. They 



include genetic algorithms (GA), simulated annealing, tabu search, scatter search, ant colonies, variable 
neighborhood search, GRASP, and path-relinking. There are many ways to classify metaheuristics. These 
include, trajectory-based versus population-based, nature-inspired versus non-nature inspired, 
memoryless versus memory-based, etc. Genetic algorithms, for example, are nature-inspired, population-
based, with memory. Tabu search are trajectory-based with memory. GRASP is trajectory-based (Festa et 
al. 2006). 

Various heuristic and metaheuristic techniques have been proposed to solve DNR problems. The first 
application of a GA to solve the DNR for loss reduction was proposed in (Nara et al. 1992). In (Carreno et 
al. 2008), a modified genetic algorithm presented by Chu-Beasley is used to solve the DNR for loss 
reduction. This work proposes a codification where, instead of representing the switching devices, the 
entire network configuration resulting from the switching is used as the individual and considered as a 
tree graph, represented as a vector with the arcs in the tree (branches) sequentially organized, from top 
to bottom of the network, being the root node (generally the substation) the top. A combination of the 
binary and discrete Particle Swarm Optimization is proposed in (Li et al. 2008) to solve the loss reduction 
problem. The method identifies groups of branches to represent the network and each group has 
unidimensional encoding. In (Santos et al. 2010), a node-depth encoding based on graph theory is 
proposed to solve very large scale DNR problems. A multi-objective evolutionary algorithm is used in 
conjunction with the node-depth encoding and two crossover operators: preserve ancestor operator 
(PAO) and change ancestor operator (CAO). These operators generate only feasible configurations, that 
is, radial DNs that supply power to the entire network. An explicit representation of the radiality 
constraints in DNR problems was proposed in (Lavorato et al. 2012). This contribution enables the solution 
of the problem using an integer programming technique. The analytical formulation proposed was solved 
using a nonlinear branch-and-bound algorithm with modest solution times. The work presented in (Braz 
and Souza 2011) uses graph theory to represent the network and a GA to solve the reconfiguration 
problem. The objective function comprises electrical losses and switching mitigation. Two novel network 
representations that generate only radial topologies were proposed: Subtractive sequential encoding and 
Additive sequential encoding. The drawback is the decodification process applied to the chromosomes to 
evaluate the fitness of the solution. In all metaheuristic techniques, the encoding of the solution is 
fundamental for the efficiency of the method. The encoding ideally should be able to generate only 
feasible solutions, reducing the size of the search space and running times of the algorithm. 

The rest of the paper is organized as follows: Section II presents the formulation for the problem of 
distribution network reconfiguration for loss reduction. Section III introduces biased random key genetic 
algorithms. Section IV describes the codification for DNR problems used in this paper. Section V presents 
the results of the study and Section VI draws some conclusions and points out future developments. 

 

2. Problem Formulation 

The DNR is an important tool for many power system operation and planning problems. It can be used for 
power loss reduction, service restoration, optimization of network voltage profiles, maximum 
accommodation of distributed generation and other objectives. This work deals with the power loss 
reduction problem, whose formulation is presented next. 
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𝑃𝑆𝑖 − 𝑃𝐷𝑖 − ∑ 𝑘𝑖𝑗𝑃𝑖𝑗 = 0     ∀𝑖 ∈ Ω𝑏
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𝑄𝑆𝑖 − 𝑄𝐷𝑖 − ∑ 𝑘𝑖𝑗𝑄𝑖𝑗 = 0     ∀𝑖 ∈ Ω𝑏

𝑗∈Ω𝑏𝑖

 

𝑆𝑖𝑗 ≤ 𝑆�̅�𝑗     ∀(𝑖𝑗) ∈ Ω𝑙  

𝑉𝑖 ≤ 𝑉𝑖 ≤ �̅�𝑖     ∀𝑖 ∈ Ω𝑏 

𝑘𝑖𝑗𝜖{0,1}     ∀𝑖𝑗 ∈ Ω𝑙  

𝑔𝜖𝐺 

 

In this formulation, 𝑖 and 𝑗 represent generic nodes of the electrical distribution system, where Ω𝑙  is the 
set of all branches 𝑖𝑗 of the network connecting nodes 𝑖 and 𝑗, and Ω𝑏is the set of all nodes 𝑖. The symbol 
𝑟𝑖𝑗 stands for the electrical resistance of branch 𝑖𝑗. The symbols 𝑃𝑖𝑗  and 𝑄𝑖𝑗  are the active and reactive 

power flows of branch 𝑖𝑗. The elements of 𝑃𝑖𝑗  and 𝑄𝑖𝑗  are given by (8) and (9), respectively, where 𝑔𝑖𝑗  is 

the conductance of branch 𝑖𝑗 and 𝑏𝑖𝑗 is the susceptance of branch 𝑖𝑗. 

 

𝑃𝑖𝑗 = 𝑉𝑖
2𝑔𝑖𝑗 − 𝑉𝑖𝑉𝑗(𝑔𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝑏𝑖𝑗𝑠𝑒𝑛𝜃𝑖𝑗) 

𝑄𝑖𝑗 = −𝑉𝑖
2𝑏𝑖𝑗 − 𝑉𝑖𝑉𝑗(𝑔𝑖𝑗𝑠𝑒𝑛𝜃𝑖𝑗 − 𝑏𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗) 

 

𝑃𝐷𝑖 is the active power demand at node 𝑖 and 𝑃𝑆𝑖  is the active power supply at the same node. 𝑄𝐷𝑖 is the 
reactive power demand at node 𝑖 and 𝑄𝑆𝑖 is the reactive power supply at the same node. The objective 
function (1) represents the power losses of the distribution system operation. Equations (2) and (3) 
represent the power flow balance equations, derived from Kirchhoff’s current law. Equation (4) 
represents operational limits on branch capacity where 𝑆𝑖𝑗is the apparent power flowing in branch 𝑖𝑗 and 

𝑆𝑖𝑗 is the apparent power capacity of the branch. Equations (5) are the operational limits on the value of 

voltages at each node 𝑖 of the network, where 𝑉𝑖 and 𝑉𝑖 are the minimum and maximum acceptable 

voltage magnitudes at node i, respectively. Equation (6) represents the binary nature of 𝑘𝑖𝑗. The circuit 

between buses 𝑖𝑗 is connected if the corresponding value is equal to one and is not connected if it is equal 
to zero. Equation (7) represents the radiality constraint of the DNR problem. It states that the graph g of 
the solution must belong to a set G composed of all allowed network structures, i.e. the set excluding 
meshed and islanded networks. Many heuristic techniques used for solving the DNR problem consider 
constraint (7) implicitly, applying equation (10). 

 

M = 𝑛𝑏 − 1 
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Where M is the number of branches of the solution and 𝑛𝑏is the number of nodes, where 𝑛𝑏 = |Ω𝑏|. 
However, this condition is necessary but not sufficient to guarantee the radiality constraint (Schmidt et 
al. 2005). Metaheuristic techniques normally ensure the radiality constraint in their solutions using graph 
theory or inside evolutionary operators. A feasible solution to the DNR for loss reduction is a distribution 
network that satisfies constraints (2) - (7) and whose electrical power losses can be calculated to obtain 
the value of the objective function 𝑓. The BRKGA for DNR proposed in this work uses a set of rules derived 
from graph theory that ensure the feasibility of solutions generated by the metaheuristic as will be 
explained in Section IV. 

 

3. Biased Random Key Genetic Algorithms 

Biased random key genetic algorithms (BRKGA) are nature inspired metaheuristics derived from the 
genetic algorithms with random keys (RKGA) introduced by Bean (1994) for solving combinatorial 
optimization problems involving sequencing.  In both methods, a chromosome is represented by a vector 
of randomly generated real numbers in the interval (0,1) called keys. Both methods search for solutions 
to the problem in a continuous n-dimensional unit hypercube and not in the problem’s search space 
directly. This way, a de-codification must be done to map the solutions in the hypercube to the problem’s 
search space. The component responsible for this mapping is called the Decoder. Decoders can vary in 
complexity depending on the problem being solved. They can be very simple, requiring a simple ordering 
of the generated keys, or can be complex algorithms composed of heuristics and local search. The BRKGA 
is a general framework for optimization composed of two structures: The genetic algorithm (GA) and the 
decoder. The decoder is problem dependent and must be devised for each problem tackled. The GA is 
problem independent, simple to implement and can be used without modification to solve any problem. 
The algorithm starts with an initial population of 𝑝 vectors of 𝑛 random keys. This initial population is 
evolved by the BRKGA over a number of iterations called generations. The initial population is then 
decoded so that the fitness of each individual can be computed. The population is then divided into a 
small set 𝑝𝑒  of elite individuals with the best fitness, and another set of 𝑝 − 𝑝𝑒  individuals. To form the 
population of the next generation, the set 𝑝𝑒  is copied, unchanged, to the next generation. The BRKGA 
uses the same strategy of classical GAs to avoid entrapment in local optima by introducing mutants into 
the population. The algorithm inserts 𝑝𝑚mutants into the population and completes the number of 
individuals by generating 𝑝 − 𝑝𝑒 − 𝑝𝑚 vectors of random keys using parametrized uniform crossover 
(Spears and DeJong 1991). Let a and b be the vectors chosen for mating and let c be the offspring 
produced. In the crossover, 𝑐[𝑖] , the i-th component of the offspring vector, receives the 𝑖-th key of one 
of its parents. It receives the key 𝑎[𝑖] with probability 𝜌𝑎 and 𝑏[𝑖] with probability 𝜌𝑏 = 1 − 𝜌𝑎. 

A BRKGA differs from a RKGA in the way parents are selected for mating during crossover. In Bean’s 
algorithm, both parents are chosen randomly from the entire population. In a BRKGA, a parent is always 
chosen from the elite set, which introduces the elitism principle in the reproduction process. This 
modification is sufficient to make the biased version of the GA to outperform the unbiased version 
(Gonçalves et al. 2014). The populations of individuals are evolved in sequence until a stopping criterion 
is reached. This criterion can be number of generations, running time or quality of solution. The best 
solution found over all generations is returned as the final result of the algorithm. Fig. 2 shows a BRKGA 
framework for solving optimization problems where the decoder is the problem dependent part of the 
algorithm. 

 



 

Fig. 2 BRKGA Framework (Gonçalves and Resende 2010) 

 

4. Codification for DNR Problems 

Codification is an adequate way to represent a single element which belongs to the search space of a 
problem, thus, it represents the information of a solution proposal (Carreño et al. 2008). After being 
decoded, the fitness of the solution should be easily calculated so that a given metaheuristic algorithm 
can use this information in the search process. The BRKGA framework allows the decodification of 
encoded solutions to result in exclusive feasible solutions, without reliance on GA operators due to the 
independence of GA and decoder.  

Graph theory can be advantageously used to aid in the codification of solutions of DNR problems.  As 
illustrated by Figure 1, a distribution network can be seen as a graph 𝐺 composed of a set of nodes 𝑁 and 
a set of edges 𝐸 − 𝐺(𝑁, 𝐸). The codification used in this work is derived from graph theory and uses a set 
of rules to correct infeasible individuals and, thus, generate only feasible vectors during decodification. 
This set of rules was proposed in (Swarnkar et al. 2011) to be used in conjunction with any metaheuristic 
technique. In a problem of DNR for loss reduction, feasibility of a solution means it is radial, without 
isolated nodes from the network. The radial configurations of a distribution network are called trees of its 
associated graph. Consider that every edge of the distribution network graph (DNG) contain a switch. A 
tree with 𝑁 nodes contains 𝑁 − 1 graph edges or twigs. The edges that were removed to form the tree 
are called links. These links form a cotree, which is the complement of the tree. The number of links of a 
DNG is given by 𝑙 = 𝐸 − (𝑁 − 1), which is usually much less than the twigs. Thus, the links can be used in 
the codification of solutions of metaheuristic techniques, reducing the size of the solution vector. In the 
following, some terms are defined. 

Principal node: the junction of three or more elements of the DNG. 

Exterior node: the node located at the perimeter of the DNG.  

Interior node: the node located inside the perimeter of the DNG. 

For the 14-node distribution network given in Fig. 1, the principal nodes of the system are nodes 1,2,8, 
and 5. The exterior nodes are 1,2,3,4,5,6, and 7. The interior nodes are 8,9,10,11,12,13, and 14. 



Loop vector: the set of elements constituting a closed path in a DNG. This closed path cannot contain in 
its interior another closed path. 

Common branch vector: the set of elements which are common between any two loop vectors of a DNG. 

Prohibited group vector: the set of the common branch vectors. From each of them, if one element is 
opened, then one or more interior nodes of the DNG will be islanded. The size of a prohibited group vector 
cannot be greater than 𝑙. 

As an example, the three groups of vectors for the system of Fig. 1 are given in Table 1. 

 

Table 1 – Loop vectors, Common branch vectors and Prohibited group vectors of 14-node system 

Loop vectors Common branch vectors Prohibited group vectors 

L1 = [1,7-11,15] C12 = [7] P1 = [C12, C13, C23] 

L2 = [4,12-14,7] C13 = [8-11,15]  

L3 = [8-11,15,2-3,16,5-6,12-14] C23 = [12-14]  

 

With these definitions in mind, the switches that are actually links of a cotree, will be used to represent a 
solution of the DNR problem. The solution vector represents a cotree which must have a corresponding 
tree that is feasible. This is accomplished by forming the solutions vectors in accordance to the following 
set of rules: 

Rule 1: each candidate switch must belong to its corresponding loop vector. 

Rule 2: only one candidate switch can be selected from one common branch vector. 

Rule 3: all the common branch vectors of a prohibited group vector cannot participate simultaneously to 
form an individual. 

These set of rules guarantee the production of feasible individuals, meaning that only radial configurations 
without islanded nodes are built, avoiding the necessity of mesh checks on solutions. Rule 1 prevents the 
islanding of exterior node(s), Rule 2 prevents the islanding of interior node(s) and Rule 3 prevents the 
islanding of principle interior node(s) of the distribution network, respectively. Using the set of three rules 
aforementioned, one can build a feasible solution to the 14-node system. Since the links of the cotree of 
a distribution network can be used to represent a solution, the links or NO switches of the 14-node system 
form a solution to the DNR problem. This solution is viable if it complies with rules 1,2, and 3. Fig. 3 
illustrates a viable solution or chromosome of the 14-node system. 

 

7 13 2 

Fig. 3 Viable chromosome of the 14-node system 

 

The representation of solutions using loop vectors greatly reduces the size of the problem’s search space 
(Wang et al. 2009). If the binary coding strategy is adopted for the 14-node system, the length of each 
chromosome would be 16 (number of branches) and the search space is 216 = 65,536 individuals. If the 
representation using loop vectors is used, the length of each chromosome is in accordance with the total 
number of system fundamental loop vectors. One gene locus corresponds to one fundamental loop, and 



its allele can be any branch that forms the fundamental loop. The value of the allele is the number of the 
branch whose switch is opened in this fundamental loop. In this representation, the size of the search 
space for the 14-node system would be 7x5x13 = 455 individuals. 

In a BRKGA framework, these set of rules can be used to build the decoder, which maps a vector of random 
keys into a solution of the optimization problem and computes the cost of this solution. The advantage of 
the BRKGA is that it is totally independent of the decoder. The BRKGA genetic operators do not need to 
be modified to generate only feasible solutions as all the other GA applications to DNR problems 
encountered in the literature. This is an exclusive task of the decoder. The BRKGA carries out the 
evolutionary process on a population of random keys inside a proprietary search space (hypercube). An 
important noteworthy fact is that decoders should be deterministic, meaning that a vector of random 
keys is always mapped to the same point in the search space of the problem being solved. Fig. 4 shows a 
pseudo-code adapted from Gonçalves and Resende (2010) for the minimization of 𝑓(𝑥), where 𝑥 ∈ 𝑋 and 
𝑋 is a discrete set of solutions and 𝑓: 𝑋 → ℝ. 

Fig. 4 – Pseudo-code for a BRKGA 
 

1 BRKGA(|𝑃|, |𝑃𝑒|, |𝑃𝑚|, 𝑛, 𝜌𝑎) 
2 Initialize value of the best solution found: 𝑓∗ ← ∞; 
3 Generate a population 𝑃 with 𝑛 vectors of random keys; 
4 while stopping criteria not satisfied do 
5 Decode and evaluate the cost of each new solution in 𝑃; 
6 Partition 𝑃 into two sets: 𝑃𝑒 and 𝑃�̅� 
7 Find best solution 𝑥+ in 𝑃: 
8 𝑥+ ← 𝑎𝑟𝑔𝑚𝑖𝑛{𝑓(𝑥)|𝑥 ∈ 𝑃}; 
9 if 𝑓(𝑥+) < 𝑓∗then 
10  𝑥∗ ← 𝑥+; 
11  𝑓∗ ← 𝑓(𝑥∗) 
12 end 
13 Initialize population of next generation: 𝑃+ ← 𝑃𝑒; 
14 Generate set 𝑃𝑚of mutants, each mutant with 𝑛 random keys; 
15 Add 𝑃𝑚 to population of next generation: 𝑃+ ← 𝑃+ ∪ 𝑃𝑚; 
16 foreach 𝑖 ← 1 to |𝑃| − |𝑃𝑒| − |𝑃𝑚| do 
17  Select parent at random from 𝑃𝑒; 
18  Select parent b at random from 𝑃�̅�; 
19  foreach 𝑗 ← 1 to 𝑛 do 
20   Throw a biased coin with probability 𝜌𝑎 > 0.5 of resulting heads; 
21   if heads then 𝑐[𝑗] ← 𝑎[𝑗]; 
22   else 𝑐[𝑗] ← 𝑏[𝑗]; 
23  end 
24  Add offspring 𝑐 to population of next generation 𝑃+ ← 𝑃+ ∪ {𝑐}; 
25 end 
26 Update population: 𝑃 ← 𝑃+; 
27 end 
28 return 𝑥∗; 



Fig. 5 shows how the set of rules are used to form the decoder inside the algorithm. The decoder is called 
in line 5 of the pseudo-code together with the evaluation of the fitness of solutions using a power flow 
program. 

 

 

Fig. 5 Decoder of a BRKGA for DNR problems 

 

Some basic details about the computational implementation of the correction rules are given next. Rule 
1 is a procedure that receives a random key vector as input and decodes it such that the first allele belongs 
to the first loop vector, the second allele belongs to the second loop vector and so forth. Fig. 6 shows how 
this is done for the first allele of a given random key vector and the first loop vector of a graph. 

 

 

Fig. 6 Decodification of a random key vector to comply with rule 1 

 

Rules 2 and 3 are procedures that analyze the decoded vector produced by rule 1 to check for violations. 
If a violation is detected, a substitute for the value of the first allele that is not obeying the corresponding 



rule is searched in the corresponding loop vector. If the violation is not eliminated, the second allele and 
its corresponding loop vector are used in the correction process. The application of the rules is sequential. 

 

5. Results 

In this section, the computational results obtained from the application of the BRKGA to solve two 
standard test systems found in DNR literature are presented. The algorithm performance is also compared 
with other GA implementations. 

Two standard IEEE distribution systems were used to test the efficiency of the BRKGA algorithm. The first 
system is a is a 33-bus distribution system (Savier and Das 2007) with 37 branches and 5 normally open 
switches. The second system is 69-bus distribution system (Baran and Wu 1989) with 73 branches and 5 
normally open switches. Both network topologies have five loop vectors, seven common branch vectors 
and six prohibited group vectors. Table 2 gives the initial configuration of the tested systems. The systems 
were considered balanced and loads were modeled as constant power to enable comparisons with other 
GAs. 

 

Table 2 - Initial configurations of tested systems 

 
Data 

Systems 

33-node 69-node 

Number of Buses 33 69 

Number of Branches 37 73 

Number of Open Switches 5 5 

Active Load (MW) 3.7 3.8 

Reactive Load (Mvar) 2.3 2.7 

Nominal Voltage (kV) 12.66 12.66 

Active Losses (MW) 0.208 0.239 

Minimum Voltage (pu) 0.911 0.903 

 

Table 3 shows the optimal solutions of the test systems used in the experiments. 

 

Table 3 – Optimal solutions of the test systems 

Test system Optimal 
configuration 

Real power loss 
(MW) 

Minimum node 
voltage (pu) 

33-node 7,9,14,37,32 0.1389 0.9423 

69-node 14,56,61,69,70 0.0997 0.9423 

 

The proposed BRKGA was implemented with the parameters given in Table 4 in some of the experiments. 
BRKGAs parameters are adjusted based on guidelines provided in Gonçalves and Resende (2010). 

 



Table 4 – BRKGA parameters 

Topology Population size Maximum 
generation 

Size of elite set Size of mutant set 

33-node 50 30 7 5 

69-node 80 30 10 8 

 

The probability 𝜌𝑎  of choosing the elite allele of the elite parent during crossover was fixed at the value 
of 0.7 for all simulations. The algorithm was developed in Matlab© using the Matpower toolbox 
(Zimmerman et al. 2011), and the simulations were done on a personal computer with an Intel Core i7-
6700HQ @2.6 GHz with 16GB of RAM. 

 

5.1. 33-node Test System 

The BRKGA was independently run 50 times – each time with a different seed for the pseudo-random 
number generator – and CPU times to optimal solution were recorded. Fig. 7 shows a time to target plot 
for the BRKGA using a population of 50, 80, and 90 individuals. As with most stochastic search methods, 
the continuous random variable time to target solution of a BRKGA has an empirical distribution that 
approximates a shifted exponential distribution These graphs are used to characterize the running times 
of stochastic algorithms for combinatorial optimization. Time-to-target (TTT) plots display on the ordinate 
axis the probability that an algorithm will find a solution at least as good as a given target value within a 
given running time, shown on the abscissa axis (Aeix et al. 2007). The Fig. 7 shows that the population size 
does not affect the time to target plots for this particular instance of the DNR problem. In 50% of the runs, 
the algorithm was able to find the optimal solution in less than 19 seconds for the three population sizes. 
It would be very useful for comparison purposes between stochastic algorithms if TTT plots were 
constructed in other technical references, but only CPU times and number of generations until 
convergence are usually presented. This makes the comparison a bit difficult. The reduced number of 
generations required for convergence of the BRKGA attests its efficiency and the implementation of a 
parallel variant can be very promising in terms of running times. 

 

Fig. 7 – Time to optimal solution plots for the 33-node system 



Fig. 8 shows a convergence characteristic of the algorithm to find the optimal solution for an independent 
run of the BRKGA on the 33-node system using a population of 100 individuals. Only 6 generations were 
needed to reach the optimal solution. The 100-individual population proved to be efficient in terms of 
running times and number of iterations to reach the optimum. Around 8 seconds were needed to reach 
the optimum. The discrete random variable iterations to target solution, on the other hand, has an 
empirical shifted geometric distribution. The Fig. 9 illustrates the empirical distribution of number of 
iterations of the BRKGA to find the optimal solution. 
 

 

Fig. 8 Convergence characteristic for a particular run of the algorithm for the 33-node system 

 

Fig. 9 - Iteration count distribution to optimal solution of the BRKGA 

 

According to Fig. 9, in 41% of the runs, the BRKGA could find the optimal solution in less than 10 iterations. 

Despite the absence of TTT plots in other technical references, the BRKGA was compared with other GA 
implementations using the methodology presented in (Braz and Souza 2011). An effective metric for 



practical applications is proposed, where the idea is to compare the results of ten algorithm runs. The 
mean time to convergence 𝑇𝐶  is used as an approximation of complexity and is given by:  

𝑇𝐶 =
𝑔′

𝑔𝑀𝐴𝑋
𝑇𝑀 

where 𝑔′ is the average of generations required to convergence, 𝑔𝑀𝐴𝑋 is the generations upper limit used 
as stop criteria, and 𝑇𝑀 is the running time average. Table 5 shows computational results comparing the 
performance of four GAs with the BRKGA. The GAs used in the comparisons differ from each other in the 
type of solution encoding. They are called conventional, improved, SSE, and ASE. The number of 
generations used as stop criteria is set to 50 for all the GA implementations.  The population size of the 
BRKGA was set to 100 individuals. 

 

Table 5 – 33-Node system comparative results between GA variants for ten independent runs 

 
GA 

Results 

𝑻𝑪 Best Average 

   𝑔′ 𝑡(𝑠)  𝑔′ 𝑇𝑀  

Conventional 30 30.0  13.7 27.0  7.34 

Improved 40 76.0  31.7 62.7  39.75 

SSE 29 78.0  27.2 61.0  33.18 

ASE 0 89.0  8.4 107.5  18.06 

BRKGA 18 24.9  25.6 37.1  19.04 

 

Only the BRKGA and ASE were robust enough to reach the optimal solution in 100% of the executions. 
Thus, 𝑇𝐶  is an effective comparative metric only for ASE and BRKGA, since the other methods did not 
achieve the same results in all runs. These results attest the efficiency and robustness of the BRKGA 
encoding. The BRKGA also outperforms the other GAs in terms of algorithm running times due to the 
reduced size of solution encoding. Other technical works also compare solution quality, but the best 
known solution (BKS) for the 33-node system is the one found by the BRKGA, as confirmed by (Zhu 2002), 
(Ramos et al. 2005) and (Enacheanu et al. 2008). 

 

5.2. 69-node Test System 

For five independent runs of the algorithm, the BRKGA was able to find the optimal solution in an average 
CPU time of 26.7 seconds. The BRKGA did not use any form of heuristic spark, which is a means of igniting 
the search engine of GAs by inserting an individual of better fitness into the population at the beginning 
of the search process.  

Fig. 10 shows a convergence characteristic of the algorithm to find the optimal solution for an 
independent run of the BRKGA on the 69-node system using a population of 100 individuals. Only 5 
generations and 10 seconds were needed to reach the optimal solution. 

 

(10) 



 

Fig. 10 Convergence characteristic for a particular run of the algorithm for the 69-node system 

 

Fig. 11 shows a time to target plot for the BRKGA using a population of 80 individuals and 100 individuals. 
It can be seen that there is a 49% probability that the algorithm will find the optimal solution under 29.13 
seconds using a smaller population. The bigger population accounts for longer running times according to 
Fig. 11 but the number of generations to reach the optimum is reduced in comparison to the smaller sized 
population. 
 

 

Fig. 11 Time to target plot to find the optimal solution for the 69-node system 

 

For the 69-node system, comparisons were carried out with respect to a conventional GA and an improved 
immune genetic algorithm (Wang et al. 2009). The algorithm was executed 100 times to enable 



comparisons with results presented in the article. The metric 𝑇𝐶  was computed accordingly. Table 6 shows 
computational results comparing the performance of two GAs with the BRKGA. 

 

Table 6 – 69-Node system comparative results between GA variants for one hundred independent runs 

 
GA 

Results 

𝑻𝑪 Best     Average 

           𝑔′  𝑔′ 𝑇𝑀  

Conventional    10  57.30 20.08  8.52 

IIGA     3  7.61 3.32  0.19 

BRKGA     5  21.28 39.29  19.04 

 

The performance of the BRKGA for the 69-Node system can also be compared with respect to average 
convergence generation with an artificial immune algorithm (Wenchuan and Jiaju 2006), a hybrid genetic 
particle swarm optimization algorithm (Zhang et al. 2007), and a hybrid intelligent algorithm (Zifa et al. 
2005). These algorithms converge, on average, in 34, 43 and 30.20 generations, respectively, whereas the 
BRKGA converges in 21.28 generations. These results show that the BRKGA is among the best 
metaheuristics for DNR problems and its performance can be substantially improved with the application 
of heuristic mechanisms such as restart procedures to prevent convergence to local optima (Gonçalves 
and Resende 2010) and heuristic spark (Swarnkar et al. 2011). 

 

6. Conclusions and Future Developments 

This paper proposes a biased random key genetic algorithm to solve a classic power system combinatorial 
optimization problem called distribution network reconfiguration. This is the first application of a BRKGA 
to a DNR problem in the technical literature. The BRKGA produces solutions that are called random keys 
inside the a real-valued interval (0,1) and a decoder is used to map these solutions into the problem’s 
search space. The decoder is built applying a set of rules derived from graph theory that guarantees the 
generation of only feasible solutions to the problem. This procedure reduces the size of the search space 
and avoids time consuming feasibility checks on solutions. Elitism is used efficiently by always using an 
elite parent on the crossover phase and by copying the entire elite set of one generation onto the next 
generation. Time to target plots for the BRKGA using different population sizes were drawn to assess the 
performance of the algorithm. The bigger sized populations consumed more CPU times but were able to 
converge to the optimum in fewer generations in comparison to the smaller populations. 

The algorithm performed extremely well on two benchmark test systems widely used for DNR studies, 
being able to find the optimal solution in a reduced number of generations most of the time. The BRKGA 
was compared with other GA implementations found in the technical literature using an efficient metric. 
One can conclude, based on the comparisons, that the BRKGA is among the best metaheuristics for DNR 
problems. The two test systems used are considered medium sized problems and future investigations 
will be done on larger systems to assess the performance of the method using multiple populations, 
heuristic improvement mechanisms and GPU parallel computing. The use of multiple populations permits 
the exchange of information regarding good individuals found in each of these populations and parallel 
processing can reduce the computation time to find the optimal solution on hard problem instances. 
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