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Abstract. A divisible load is an amount W ∈ R of computational work
that can be arbitrarily divided into chunks and distributed among a set
P of worker processors to be processed in parallel. Divisible load ap-
plications occur in many fields of science and engineering. They can be
parallelized in a master-worker fashion, but they pose several scheduling
challenges. The Divisible Load Scheduling Problem consists in (a) select-
ing a subset A ⊆ P of active workers, (b) defining the order in which
the chunks will be transmitted to each of them, and (c) deciding the
amount of load αi that will be transmitted to each worker i ∈ A, with∑

i∈A
αi = W , so as to minimize the makespan, i.e., the total elapsed

time since the master began to send data to the first worker, until the
last worker stops its computations. In this work, we propose a biased
random-key genetic algorithm for solving the divisible load scheduling
problem. Computational results show that the proposed heuristic out-
performs the best heuristic in the literature.
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1 Introduction

A divisible load is an amount W ≥ 0 of computational work that can be ar-
bitrarily divided and distributed among different processors to be processed in
parallel. The processors are arranged in a star topology and the load is stored in
a central master processor. The master splits the load into chunks of arbitrary
sizes and transmits each of them to other worker processors. In the remainder
of the text we refer to each worker as a processor, while the term master is used
to differentiate the master processor from the worker processors.

The master can only send load to one processor at a time. It is assumed
that it does not process the load itself. Any processor can only start processing
after it has completely received its respective chunk of the load. The processors
are heterogeneous in terms of processing power, communication speed, and setup
time for start communicating with the master. Not all available processors should
necessarily be used for processing the load. Consequently, despite how the load
is split, the choice of (i) which processors are used and (ii) the order in which
the chunks are transmitted influences the total processing time of the load.

The Divisible Loading Scheduling Problem (DLSP) was introduced in [13],
motivated by an application in intelligent sensor networks. Applications of DLSP
arise from a number of scientific problems, such as parallel database searching
[12], parallel image processing [27], parallel video encoding [28,38], processing of
large distributed files [40], and task scheduling in cloud computing [30], among
others.

In this work, we deal with the same DLSP variant treated in [1, 11]. Let
W ∈ R be the amount of load to be processed, 0 (zero) be the index of the
master processor, and P = {1, ..., n} be the set of worker processors indices.
Each processor i ∈ P has (i) a setup time gi ∈ R to start the communication
with the master, (ii) a communication time Gi ∈ R needed to receive each unit
of the load from the master and (iii) a processing time wi ∈ R needed to process
each unit of the load. Therefore, it takes gi +αi ·Gi units of time for the master
to transmit a load chunk of size αi ∈ R to the processor i ∈ P . Furthermore, it
takes an additional wi · αi units of time for this worker to process the chunk of
load assigned to it.

The scheduling problem consists of (a) selecting a subset A ⊆ P of active
processors, (b) defining the order in which the chunks will be transmitted to each
active processor and (c) deciding the amount of load αi that will be transmitted
to each processor i ∈ A, with

∑n

i=1
αi = W , so as to minimize the makespan, i.e.,

the total elapsed time since the master began to send data to the first processor,
until the last processor stops its computations. This problem was proved NP-
Hard in [45]. We note that αi = 0, for all i ∈ P \A.

An example of an optimal single-round solution for DLSP is displayed in
Figure 1, while an example of a non-optimal solution is displayed in Figure 2.
One can see three time bars for each processor in these figures. The first bar
represents the amount of time that is necessary to start the communication with
the master, while the second corresponds to the amount of time needed to receive
the respective chunk of load. Finally, the third bar represents the time spent by



the worker to process this chunk. It can be seen that the master only starts the
communication with a processor after finishing the transmission to the previous
one.

Fig. 1. Example of an optimal single-round scheduling.

Fig. 2. Example of a non-optimal single-round scheduling.

Since the load can be split arbitrarily, all processors stop at the same time
in the optimal solution [5]. In addition, if the order in which the chunks are
transmitted to the processors is fixed, then the best solution can be computed
in O(n) time, using the AlgRap algorithm developed in [1]. In other words,
given a permutation of the processors in P , AlgRap computes the set of active
processors and the amount of load that has to be sent to each of them to minimize
the makespan. Therefore, DLSP can be reduced to the problem of finding the
best permutation of the processors, i.e., the one which induces the solution with
the minimum makespan. In order to find this permutation, we propose a biased



random-key genetic algorithm [19, 20, 24], which has been successfully used for
solving many permutation based combinatorial optimization problems [18, 20–
23,25,32,33].

The remainder of the paper is organized as follows. Related work is reviewed
in the next section. The proposed heuristic is described in Section 4. Computa-
tional experiments are reported and discussed in Section 5. Concluding remarks
are drawn in the last section.

2 Related work

There are many variants of DLSP in the literature. Divisible load scheduling
may be performed in a single round or in multiple rounds. In the single-round
case [1, 3–5, 7, 9, 11, 14, 16, 17, 26, 29, 35, 39, 41, 42], each active processor receives
and processes a single chunk of the load. In the multi-round case [1, 4, 6, 8, 15–
17, 34, 36, 42–44], each active processor receives and processes multiple chunks
of load. After the master finishes the transmission of the first round of load to
all active processors, it immediately starts the transmission of the next batch of
load chunks following the same order, until all the load is distributed among the
processors.

The processors may be homogeneous or heterogeneous. If the processors are
homogeneous, the values of gi, Gi, and wi are the same for all processors i ∈
P [4,8,9,26,43,44]. Contrarily, in the heterogeneous case the values of gi, Gi, and
wi may be different for each processor [1, 3, 5, 6, 11,14–17,29,34–36,39,41–44].

The system can be dedicated or non-dedicated. When the system is dedi-
cated, it is assumed that all resources (processors, memory, network, etc.) are
used to process a single computational load [1,5–7,9,11,14,16,17,34,39,41–44].
Non-dedicated systems may be used to simultaneously process different compu-
tational loads [6, 7, 35].

There may be a limitation to the maximum chunk size that can be received
by each processor. When such a limitation does not exist, the problem is said to
be unconstrained [1, 4, 5, 8, 9, 11, 14, 34–36, 39, 41]. If the maximum chunk size is
limited, the problem is said to be buffer constrained [6, 7, 15–17,29,42–44].

In this work, we consider the unconstrained single-round DLSP with dedi-
cated and heterogeneous processors [1, 4, 5, 11, 16, 41, 45], that was proved to be
NP -hard in [45]. Blazewicz and Drozdowski [11] showed that once a permutation
of the processors is given, a solution with minimum makespan can be obtained
in O(n log n) time, where n = |P | is the number of processors. Later, Abib and
Ribeiro [1] proposed the faster AlgRap algorithm that finds this solution in O(n)
time. Beaumont et al. [5] showed that if gi = 0, for all i ∈ P , then DLSP can
be polynomially solved by sorting the processors in non-decreasing order of the
Gi values. They also showed that if Gi = Gj , for all i, j ∈ P , then the problem
can be solved by sorting the processors in non-decreasing order of the products
gi · wi.

Non-linear programming formulations for the unconstrained single-round DLSP
with dedicated and heterogeneous processors were proposed in [4, 14]. However,



to the best of our knowledge, there are no efficient algorithms in the literature
to solve these formulations. The first mixed integer linear programming formu-
lation for DLSP was proposed in [1]. This formulation is described below and
used to assess the quality of the heuristic proposed later in this paper.

Let a DLSP instance be defined by < W,P, g,G,w >. Formulation (1)-(11)
rely on decision variables xij ∈ {0, 1}, with xij = 1 if the processor i ∈ P is
the jth processor to receive its load, and xij = 0 otherwise. Variables αij ≥ 0
amount for the size of the load chunk received by the processor i ∈ P if it is
the jth processor to receive its load. We notice that αij = 0 if the processor i
is not the jth to receive its load and that

∑
j∈{1,...,|P |} αij = 0 if processor i is

not active. Non-negative auxiliary variables T and tj , for all j ∈ {1, . . . , |P |},
stand for the makespan and the time the jth processor starts receiving its chunk,
respectively:

Minimize T (1)
n∑

i=1

xij ≤ 1 ∀j ∈ {1, ..., n} (2)

n∑

j=1

xij ≤ 1 ∀i ∈ {1, ..., n} (3)

n∑

i=1

xij ≥
n∑

i=1

xi,j+1 ∀j ∈ {1, ..., n− 1} (4)

n∑

i=1

n∑

j=1

αij = W (5)

αij ≤ W · xij ∀i ∈ {1, ..., n}, ∀j ∈ {1, ..., n} (6)

t1 = 0 (7)

tj ≥ tj−1 +

n∑

i=1

(gi · xi,j−1 +Gi · αi,j−1) ∀j ∈ {2, ..., n} (8)

tj +
n∑

i=1

(gi · xij + (Gi + wi) · αij) = T ∀j ∈ {1, ..., n} (9)

xij ∈ {0, 1} ∀i ∈ {1, ..., n}, ∀j ∈ {1, ..., n} (10)

αij ≥ 0 ∀i ∈ {1, ..., n}, ∀j ∈ {1, ..., n}. (11)

The objective function (1) consists in minimizing the makespan. Constraints
(2) imply that at most one processor can be the jth to receive data. Constraints
(3) ensure that each processor can be activated at most once. Constraints (4)
guarantee that there must be j previously activated processors when the (j +
1)th is activated. Constraint (5) enforces that the full load is divided over the
processors. Constraints (6) establish processor i can only be the jth to receive
data if it was chosen to be the jth in the activation order. Constraint (7) is used



to indicate that data transmission starts at time zero. Constraints (8) are used to
enforce that the jth processor to be activated will start receiving data after the
previous processor in the activation order finishes receiving its data. Constraints
(9) imply that the makespan T is equal to the time tj in which any processor j
starts receiving data plus the time

∑n

i=1
gixij + (Gi +wi)αij it needs to receive

and process it. These constraints rely on the fact that, in any optimal solution,
all processors finish at the same time [10]. Constraints (10) and (11) define the
integrality of variables xij and the non-negativity of variables αij , respectively.
This formulation improves and extends that in [4].

Computational experiments reported in [1] have shown that the CPLEX
branch-and-cut algorithm based on this formulation was able to find optimal
solutions for 490 out of 720 instances with up to 160 processors. However, for the
largest unsolved instances, the integrality gaps were very high, which motivated
the development of heuristics for solving DLSP.

Once again, to the best of our knowledge, the HeuRet heuristic proposed by
Abib and Ribeiro [1] for the DLSP variant studied in this paper is the most
effective in the literature. At each iteration, their algorithm (i) estimates a per-
formance index ei for each processor i ∈ P and (ii) builds a solution by taking
the processors in P in a non-increasing order of the ei values. The algorithm sets
ei = Gi, for all i ∈ P , in the first iteration and makes use of the exact algorithm
AlgRap to compute an initial solution s0 with makespan T0. Next, and at each
forthcoming iteration k, the estimated performance ei of each processor i ∈ P
is updated using the values of gi, wi, Gi, and Tk−1 and a new solution with
makespan Tk is built by algorithm AlgRap considering the new order defined
on the processors by the newly updated performance indices ei. The procedure
stops when Tk−1 < Tk, i.e., when the new solution degenerates the makespan of
the previous one due to the use of some processor that is not needed.

The heuristic proposed in Section 4 improves upon HeuRet because, instead
of defining a greedy local search based on the performance estimations of the
processors, it performs a global search in the space of processor permutations
in order to find the permutation that induces the optimal or a near-optimal
solution. As both HeuRet and the new heuristic rely on the AlgRap algorithm,
we describe it in the next section.

3 Solving DLSP with a fixed activation order

In this section, we describe the linear-time algorithm AlgRap proposed in [1] for
the special case in which the processor activation order is fixed beforehand. In
this case, the scheduling problem consists exclusively in computing the load to
be sent to each processor.

Without loss of generality and for easiness of notation, we assume that pro-
cessor i ∈ P is the i-th to be activated. We denote by α∗

i the optimal amount of
data to be sent to processor i and we define fi = (wi+Gi)/wi−1, for i = 1, . . . , n.



3.1 Feasible solutions with a given number of processors

We first suppose that the number ℓ of processors to be used is also known. In
this case, Blazewicz and Drozdowski [11] established that the solution to the
system

αk · wk = gk+1 + αk+1 · (wk+1 +Gk+1), k = 1, . . . , ℓ− 1 (12)

ℓ∑

k=1

αk = W (13)

gives the optimal loads:

αk = αℓ

ℓ∏

j=k+1

fj +

ℓ∑

j=k+1

(
gj

wj−1

j−1∏

i=k+1

fi), k = 1, . . . , ℓ− 1 (14)

αℓ =
W −

∑ℓ−1

k=1

∑ℓ

j=k+1
(

gj
wj−1

∏j−1

i=k+1
fi)

1 +
∑ℓ−1

k=1

∏ℓ

j=k+1
fj

. (15)

These values yield a feasible solution if αk ≥ 0, for every k = 1, . . . , ℓ. Equa-
tions (12) imply that the products αi · wi are non-increasing for i = 1, . . . , ℓ,
since all constants Gi, wi, and gi are non-negative. Therefore, αi ≥ 0 if and only
if αℓ ≥ 0, for i = 1, . . . , ℓ. Finally, we conclude from equation (15) that the above

solution is feasible if and only if V (ℓ) =
∑ℓ−1

k=1

∑ℓ

j=k+1
(

gj
wj−1

∏j−1

i=k+1
fi) ≤ W.

3.2 Optimal number of processors

We now investigate the exact number ℓ∗ of processors that should be activated
in an optimal solution. The term V (ℓ) appearing in the numerator of equation
(15) may be recursively defined by

V (ℓ) =
gℓ

wℓ−1

ℓ−1∑

k=1

ℓ−1∏

i=k+1

fi + V (ℓ− 1). (16)

For any activation order, V (ℓ) is a non-decreasing function of the number ℓ
of activated processors. A solution is infeasible if V (ℓ) > W . Let the function

F (ℓ) =
∑ℓ−1

k=1

∏ℓ−1

i=k+1
fi be recursively defined by

F (1) = 0,

F (2) = 1, and

F (ℓ) = 1 + F (ℓ− 1)fℓ−1.

Therefore, V (1) = 0 and for any ℓ > 1

V (ℓ) =
gℓ

wℓ−1

F (ℓ) + V (ℓ− 1) (17)



may be computed in time O(1) from V (ℓ− 1) and F (ℓ).
Let us assume that a feasible solution exists for r processors and suppose

that one additional processor is made available. If a feasible solution satisfying
constraints (12-13) still exists, then some load will be transferred from one of
the original r processors to the new processor taking part in the computations.
In consequence, the loads assigned to the other processors will be decreased
and the makespan will be reduced. Therefore, the optimal solution (i.e., that
with minimum makespan) will have as many processors as possible to achieve
feasibility.

3.3 Linear-time algorithm

Given a fixed activation order, the algorithm starts by sending all the load ex-
clusively to the first processor. Next, the number ℓ of processors is iteratively
increased from 1 to n, until V (ℓ) turns out to be greater than W . Then, the
optimal number of processors is set as ℓ∗ = ℓ− 1.

Once the optimal number ℓ∗ of processors has been computed, the load αℓ∗

sent to the last processor is computed from equation (15). The other loads αi,
for i = 1, . . . , ℓ∗ − 1, are recursively computed from ℓ∗ using equation (14).
Algorithm 1 implements the above computations in time O(n).

In addition to the number of processors and all their data, this algorithm
takes as input a vector π describing the activation order, such that π(i) = j
indicates that processor j is the i-th to be activated, for i, j = 1, . . . , n. For
instance, if n = 3 and π =< 2, 3, 1 >, then processor 2 is the first to be activated,
processor 3 is the second, and processor 1 is the third.

4 Biased random-key genetic algorithm

Genetic algorithms with random keys, or random-key genetic algorithms (RKGA),
were first introduced by [2] for combinatorial optimization problems for which
solutions can be represented as a permutation vector. Solutions are represented
as vectors of randomly generated real numbers called keys. A deterministic al-
gorithm, called a decoder, takes as input a solution vector and associates with
it a feasible solution of the combinatorial optimization problem, for which an
objective value or fitness can be computed. Two parents are selected at random
from the entire population to implement the crossover operation in the imple-
mentation of a RKGA. Parents are allowed to be selected for mating more than
once in a given generation.

A biased random-key genetic algorithm (BRKGA) differs from a RKGA in
the way parents are selected for crossover, see Gonçalves and Resende [20] for a
review. In a BRKGA, each element is generated combining one element selected
at random from the elite solutions in the current population, while the other is
a non-elite solution. The selection is said biased because one parent is always
an elite individual and has a higher probability of passing its genes to the new
generation.



Require: Vector π establishing the activation order
Ensure: Minimum makespan T ∗, number ℓ∗ of processors, loads αi for i = 1, . . . , n
1: F [1]← 0
2: F [2]← 1
3: for i = 3 to n do

4: F [i]← 1 + F [i− 1] · (wπ[i−1] + Gπ[i−1])/wπ[i−2]

5: end for

6: V [1]← 0
7: for i = 2 to n do

8: V [i]← (gπ[i]/wπ[i−1]) · F [i] + V [i− 1]
9: end for

10: for ℓ = 1 to n do

11: if V [ℓ] ≤W then

12: ℓ∗ ← ℓ
13: end if

14: end for

15: numerator ←W − V [ℓ∗]
16: product← (wπ[ℓ∗] + Gπ[ℓ∗])/wπ[ℓ∗−1]

17: denominator ← 1
18: for k = ℓ∗ − 1 down to 1 do

19: denominator ← denominator + product
20: if k 6= 1 then

21: product← product · (wπ[k] + Gπ[k])/wπ[k−1]

22: end if

23: end for

24: απ[ℓ∗] ← numerator/denominator
25: for k = ℓ∗ − 1 to 1 do

26: απ[k] ← (gπ[k+1] + απ[k+1] · (wπ[k+1] + Gπ[k+1]))/wπ[k]

27: end for

28: for k = ℓ∗ + 1 to n do

29: απ[k] ← 0
30: end for

31: T ∗ ← απ[1] · (wπ[1] + Gπ[1]) + gπ[1]

Algorithm 1: Linear-time algorithm AlgRap for a fixed activation order.



The BRKGA-DLS biased random-key genetic algorithm for DLSP evolves a
population of chromosomes that consists of vectors of real numbers (keys). Each
solution is represented by a |P |-vector, in which each component is a real number
in the range [0, 1] associated with a processor in P . Each solution represented
by a chromosome is decoded by a heuristic that receives the vector of keys and
builds a feasible solution for DLSP. The decoding heuristic is based on algorithm
AlgRap described in the previous section. Decoding consists of two steps: first,
the processors are sorted in a non-decreasing order of their random keys; next,
the resulting order is used as the input for AlgRap. The makespan of the solution
provided by AlgRap is used as the fitness of the chromosome.

We use the parametric uniform crossover scheme proposed in [37] to com-
bine two parent solutions and produce an offspring. In this scheme, the offspring
inherits each of its keys from the best fit of the two parents with probability
0.60 and from the least fit parent with probability 0.40. This genetic algorithm
does not make use of the standard mutation operator, where parts of the chro-
mosomes are changed with small probability. Instead, the concept of mutants
is used: a fixed number of mutant solutions are introduced in the population in
each generation, randomly generated in the same way as in the initial popula-
tion. Mutants play the same role of the mutation operator in traditional genetic
algorithms, diversifying the search and helping the procedure to escape from
locally optimal solutions.

The keys associated to each processor are randomly generated in the initial
population. At each generation, the population is partitioned into two sets: TOP

and REST . Consequently, the size of the population is |TOP |+ |REST |. Subset
TOP contains the best solutions in the population. Subset REST is formed
by two disjoint subsets: MID and BOT , with subset BOT being formed by
the worst elements on the current population. As illustrated in Figure 3, the
chromosomes in TOP are simply copied to the population of the next generation.
The elements in BOT are replaced by newly created mutants that are placed in
the new set BOT . The remaining elements of the new population are obtained by
crossover with one parent randomly chosen from TOP and the other from REST .
This distinguishes a biased random-key genetic algorithm from the random-key
genetic algorithm of Bean [2], where both parents are selected at random from the
entire population. Since a parent solution can be chosen for crossover more than
once in a given generation, elite solutions have a higher probability of passing
their random keys to the next generation. In this way, |MID | = |REST −BOT |
offspring solutions are created. In our implementation, the population size was
set to |TOP | + |MID| + |BOT | = 5 × |P |, with the sizes of sets TOP , MID ,
and BOT set to 0.15× 5× |P |, 0.7× 5× |P |, and 0.15× 5× |P |, respectively, as
suggested by Noronha et al. [32].

5 Computational experiments

In this section, we report computational experiments to assess the performance
of the biased random-key genetic algorithm BRKGA-DLS. This algorithm was



Fig. 3. Population evolution between consecutive generations of a BRKGA.

implemented in C++ and compiled with GNU C++ version 4.6.3. The experi-
ments were performed on a Quad-Core AMD Opteron(tm) Processor 2350, with
16 GB of RAM memory.

The set of instances used in the three first experiments was the same pro-
posed in [1]. There are 120 grid configurations with n = 10, 20, 40, 80, 160 worker
processors and eight combinations of the parameter values gi, Gi and wi, i =
1, . . . , n, each of them ranging either in the interval [1, 100], denoted as low,
or in the interval [1000, 100,000], denoted as high. Three instances were gener-
ated for each combination of n, gi, Gi, and wi. Six different values of the load
W = 100, 200, 400, 800, 1600, 3200 are considered for each grid configuration,
corresponding to 18 instances for each combination of parameters gi, Gi and wi,
amounting to a total of 720 test instances. Each heuristic was run 10 times for
each instance, with different seeds for the random number generator of [31].

The first experiment consisted in evaluating if BRKGA-DLS efficiently iden-
tifies the relationships between keys and good solutions and converges faster to
near-optimal solutions. We compare its performance with that of a multi-start
procedure that uses the same decoding heuristic as BRKGA-DLS. Each iter-
ation of the multi-start procedure, called MS-DLS, applies the same decoding
heuristic of BRKGA-DLS, but using randomly generated values for the keys. In
this experiment, BRKGA-DLS was run for 1000 generations and MS-DLS for
1000 × q iterations, where q = 5 × |P | is the population size of BRKGA-DLS.
The results are reported in Figure 4. The first bar gives the average over the
720 instances of the percent relative reduction between the worst solution value
returned by BRKGA-DLS with respect to that obtained by MS-DLS. The next
two bars give the same information for the average and best solution values. It



can be seen that the average solution values found by BRKGA-DLS were 4.95%
better than those provided by MS-DLS. Also, the worst (resp. best) solution val-
ues found by BRKGA-DLS were 5.98% (resp. 3.78) smaller than the respective
worst (resp. best) solution values obtained with MS-DLS. These results indicate
that BRKGA-DLS identifies the relationships between keys and good solutions,
making the evolutionary process converge to better solutions faster than MS-
DLS.

Fig. 4. Average percent relative reduction over the 720 instances of the best, average
and worse solution values found by BRKGA-DLS with respect to those obtained by
MS-DLS.

In the second experiment, we compare BRKGA-DLS with HeuRet and MS-
DLS. We first evaluated how many optimal solutions have been obtained by each
heuristic over the 720 test instances. The default CPLEX branch-and-cut algo-
rithm based on the formulation of [1] was also run for the 720 instances. Version
12.6 of CPLEX was used and the maximum CPU time was set to 24 hours.
CPLEX was able to prove the optimality for 497 out of the 720 test instances.
The first line of Table 1 shows that BRKGA-DLS found optimal solutions for 413
instances (i.e. 83.1%) out of the 497 instances for which the optimal solutions are
known, while HeuRet found 320 optimal solutions and MS-DLS found only 177
of them. The second line of Table 1 gives the number of instances for which each
heuristic found the best known solution value. The third line of this table shows
the number of runs for which BRKGA-DLS and MS-DLS found the best known
solution values (we recall that HeuRet is a deterministic algorithm, while the
others are randomized). Finally, the last line of this table gives, for each of the
three heuristics, a score that represents the sum over all instances of the number
of methods that found strictly better solutions than the specific heuristic being
considered. The lower a score is, the best the corresponding heuristic is. It can
be seen that BRKGA-DLS outperformed both HeuRet and MS-DLS heuristics
with respect to the number of optimal and best solutions found, as well as with
respect to the score value. In particular, BRKGA-DLS obtained better scores



than HeuRet for all but one instance and found the best known solution values
for 645 out of the 720 test instances, while HeuRet found the best solution values
for only 313 instances.

Table 1. Summary of the numerical results obtained with BRKGA-DLS, HeuRet and
MS-DLS for 720 test instances.

MS-DLS HeuRet BRKGA-DLS

Optimal values (over 497 instances) 177 320 413
Best values (over 720 instances) 189 313 645
Best values (over 7200 runs) 2166 - 6191
Score value 803 112 1

In the third experiment, we assess the computation times of BRKGA-DLS
and show how they grow with the number of processors. The results are shown
in Table 2. The three first columns show the ranges of values of wi, gi, and
Gi, respectively, for each group of instances. The five next columns display the
results for the instances with n equal to 10, 20, 40, 80, and 160. Since there
are three instances for each of the six values of W , each table cell gives the
average CPU time of BRKGA-DLS over 18 instances with the same values of
wi, gi, Gi, and n. One can see that the average CPU time for the instances with
10, 20, 40, 80, and 160 was, respectively, 0.07, 0.31, 1.31, 5.63, 25.18 seconds.
These results show that the average computation time of BRKGA-DLS increases
linearly with the number of processors by a factor of approximately four every
time the number of processors is doubled. The maximum average computation
time observed for BRKGA-DLS was 25.18 seconds for the instances with 160
processors.

Table 2. Running times in seconds for BRKGA-DLS.

wi gi Gi 10 20 40 80 160

low low low 0.07 0.30 1.28 5.50 24.65
low low high 0.06 0.29 1.24 5.40 24.40
low high low 0.06 0.29 1.23 5.41 24.34
low high high 0.06 0.29 1.23 5.38 24.43
high low low 0.08 0.34 1.48 6.48 28.87
high low high 0.08 0.35 1.35 5.70 25.23
high high low 0.08 0.33 1.36 5.64 24.84
high high high 0.07 0.30 1.29 5.51 24.69

Average 0.07 0.31 1.31 5.63 25.18

The fourth and last experiment provides a more detailed comparison be-
tween HeuRet and BRKGA-DLS, based on 20 new, larger and more realistic
instances with |P | = 320 and W = 10.000. The values of Gi and gi have been



randomly generated in the ranges [1, 100]and [100, 100.000], respectively. How-
ever, differently from [1], the values of wi have been randomly generated in the
interval [200, 500]. These values are more realistic, since the processing rate of a
real computer is always larger than its communication rate. In this experiment,
BRKGA-DLS was made to stop after |P | generations without improvement in
the best solution found. The results are reported in Table 3. The first column
shows the instance name. The second and third columns display, respectively,
the makespan and the CPU time (in seconds) obtained by HeuRet. The next
two columns provide the average makespan over ten runs of BRKGA, the corre-
sponding coefficient of variation, defined as the ratio of the standard deviation
to the average. The average computation time in seconds of BRKGA over ten
runs is given in the sixth column. The last column shows the percent relative
reduction between the average solution found by BRKGA-DLS with respect to
that found by HeuRet. It can be seen that the average makespan obtained by
BRKGA-DLS is always smaller than that given by HeuRet. In addition, the co-
efficient of variation of BRKGA-DLS is very small, indicating that it is a robust
heuristic. The percent relative reduction of BRKGA-DLS with respect to HeuRet
amounted to 3.19% for instance dls.320.10 and to 2.38% on average. As in real-
life applications the load size may be very large, and the total communication
and processing times may take many hours, an average reduction of 2.38% may
be very significant. Although the running times of BRKGA-DLS are larger than
those of HeuRet, their average values never exceeded the time taken by HeuRet
by more than 30 seconds. Since practical applications of parallel processing take
long elapsed times, the trade-off between the reduction in the elapsed time and
this small additional running time needed by BRKGA accounts very favorably
to BRKGA-DLS.

6 Conclusions

We considered the unconstrained single-round divisible load scheduling problem
with dedicated and heterogeneous processors. A new heuristic biased random-key
genetic algorithm has been proposed for the problem.

The BRKGA-DLS heuristic improves upon the best heuristic in the litera-
ture in terms of solution quality, since it performs a global search in the space
of processor permutations in order to find the best activation sequence of the
processors.

Computational experiments on 720 test instances with up to 160 processors
have shown that BRKGA-DLS found optimal solutions for 413 instances (out
of the 497 instances where the optimal solution is known), while the HeuRet
heuristic found optimal solutions for only 320 of them. Moreover, BRKGA-DLS
obtained better scores than HeuRet for all but one instance and found solutions
as good as the best known solution for 645 out of the 720 test instances. To
summarize, BRKGA-DLS outperformed the previously existing HeuRet heuristic
with respect to all measures considered in Table 1.



Table 3. BRKGA vs. HeuRet on the largest instances with 320 processors.

HeuRet BRKGA

Instance makespan time (s) makespan CV (%) time (s) reduction (%)

dls.320.01 312813.64 0.01 306613.22 0.04 27.24 1.98
dls.320.02 321764.07 0.01 313847.15 0.07 16.72 2.46
dls.320.03 402264.85 0.01 392059.46 0.11 23.72 2.54
dls.320.04 348474.15 0.01 341436.89 0.02 28.16 2.02
dls.320.05 342086.46 0.01 334946.37 0.03 21.67 2.09
dls.320.06 311824.17 0.01 305601.28 0.02 21.93 2.00
dls.320.07 325732.30 0.01 316467.42 0.02 23.19 2.84
dls.320.08 323171.95 0.01 315065.11 0.03 26.23 2.51
dls.320.09 312326.77 0.01 305948.81 0.02 25.03 2.04
dls.320.10 296984.47 0.01 287521.34 0.12 24.04 3.19
dls.320.11 290559.21 0.01 284822.15 0.04 20.56 1.97
dls.320.12 343076.56 0.01 333085.72 0.05 19.53 2.91
dls.320.13 287276.21 0.01 281525.27 0.04 22.77 2.00
dls.320.14 311054.47 0.01 303796.42 0.06 26.81 2.33
dls.320.15 362369.67 0.01 352642.18 0.04 20.41 2.68
dls.320.16 287083.60 0.01 281082.29 0.09 25.38 2.09
dls.320.17 339666.43 0.01 329893.61 0.04 23.53 2.88
dls.320.18 368795.14 0.01 361281.06 0.07 22.08 2.04
dls.320.19 347671.73 0.01 338075.70 0.03 27.59 2.76
dls.320.20 372427.24 0.01 364013.40 0.06 18.28 2.26

Average 330371.15 0.01 322486.24 0.05 23.24 2.38

For the new set of larger and more realistic instances with 320 processors,
BRKGA-DLS found solution values 2.38% better than HeuRet on average. In
addition, the processing times of BRKGA-DLS are relatively small and never
exceeded 30 seconds. Therefore, parallel processing applications dealing with
large amounts of data and taking long elapsed times can benefit from BRKGA-
DLS, since the additional running time needed by BRKGA-DLS may result in
a significant reduction in the makespan.

We are currently working on the extension of this approach to the harder
case of multi-round (or multi-installment) scheduling. In this case, the load is
distributed to the active processors in several consecutive bursts, reducing the
waste in each processor and making better use of the resources to reduce the
overall makespan, as illustrated in Figure 5.
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