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ABSTRACT. Interior gateway routing protocols like OSPF (Open Shortest Path First)
and DEFT (Distributed Exponentially-Weighted Flow Splitting) send flow through forward
links towards the destination node. OSPF routes only on shortest-weight paths, whereas
DEFT sends flow on all forward links, but with an exponential penalty on longer paths.
Finding suitable weights for these protocols is known as the weight setting problem. In
this paper, we present a biased random-key genetic algorithm for the weight setting prob-
lem using both protocols. The algorithm uses dynamic flow and dynamic shortest path
computations. We report computational experiments that show that DEFT achieves less
network congestion when compared with OSPF, while, however, yielding larger delays.

1. INTRODUCTION

The Internet consists of numerous Autonomous Systems (ASes), each one using an In-
terior Gateway Protocol (IGP) to control routing within the AS. The topology of an Internet
network can be represented as a directed graph comprised of a set of routers (nodes) and
a set of communication links (arcs). A set of routers under the control of one or more
network operators who apply the same routing policy is what characterizes an AS. Given a
demand matrix containing the amount of traffic to be sent between all pairs of routers, IGP
routing protocols establish rules on how the load will be sent from source to destination
within the AS.

Certainly, the most flexible routing model is the fractional multi-commodity flow rout-
ing (in Section 2 we refer to this routing as OPT). This routing model makes the best
possible use of network link capacities. However, it is difficult to implement this protocol
in practice because of arbitrarily long paths, and the arbitrarily small demand loads that
can be routed on high-capacity links. Therefore, telecommunication network protocols are
based on routing models that are less efficient with respect to capacity utilization, but easier
to implement in practice.

Among existing IGP routing protocols, there are a few that have been long used in prac-
tice, as is the case of OSPF (Open Shortest Path First), whereas others have been recently
proposed and are not yet implemented in real networks, as is the case of DEFT (Distributed
Exponentially-Weighted Flow Splitting). Both OSPF and DEFT are link-state routing pro-
tocols. These protocols allow the network operator to calculate paths on the network by
setting adequate link weights to balance the load on the network. The load is then sent
through the paths from source to destination and quantities such as network congestion,
link utilization, and delay can be measured. The problem of determining proper weights to
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optimize an objective function or multiple conflicting objectives on these metrics is known
as the Weight Setting Problem (WSP).

The objective of intradomain traffic engineering is the efficient utilization of the avail-
able network resources within an AS under traffic constraints. The traffic constraints can
include QoS (Quality of Service) features like delay, jitter, number of hops or cost. With
these aims, the weight setting problem has been studied for almost a decade for OSPF
routing. In OSPF, integer link weights are set by the network operator. The flow is routed
through the shortest paths, splitting traffic evenly, in each node, among all outgoing short-
est path links. The objective is to determine link weights such that if the traffic is routed
according to the protocol, then congestion is minimized. This single-objective routing,
however, has its limitations. For example, it does not deal directly with QoS requirements
that one may also want to optimize. Multi-objective routing can help us address these
requirements. See, e.g. Girdo-Silva et al. (2009).

The weight setting problem in OSPF routing was proved to be NP-hard by Fortz and
Thorup (2000). They also proposed a tabu search heuristic, and compared results with a
lower bound for the problem obtained by solving the corresponding multi-commodity flow
problem. Their results show that for most instances, the solutions are about 10% above the
lower bound. But for a few instances, the gaps between the solution and the lower bound
were up to twice the lower bound.

Another heuristic, a biased random-key genetic algorithm (BRKGA) introduced by Er-
icsson et al. (2002), was applied on the same set of instances considered in Fortz and
Thorup (2000), and also produced large gaps for the hardest instances. Buriol et al. (2005)
incorporated a local search procedure into a modified version of the decoder of the BRKGA
of Ericsson et al., resulting in a memetic algorithm (Moscato, 2002). For most of the
same instances, the gap decreased when compared with results from the previous methods.
A mathematical formulation for the problem was first proposed by Holmberg and Yuan
(2004). Subsequently, survivability aspects were introduced by Brostrom and Holmberg
(2006).

A wide range of other link-state routing protocols exist. One of these protocols is IS-
IS (Intermediate System to Intermediate System). It considers basically the same rules
as OSPF, with the main difference that OSPF is an IP protocol, whereas IS-IS is natively
an ISO (International Organization for Standardization) network layer protocol. A few
different link-state protocols are reported in the literature. Examples of these protocols
are those that consider unsplittable shortest path routing (Ben-Ameur and Gourdin, 2003;
Bley, 2005).

DEFT (Distributed Exponentially-Weighted Flow SpliTting) is an IGP routing protocol,
recently proposed by Xu et al. (2007). DEFT considers not only shortest paths for rout-
ing. It directs flow through all forward paths, but with exponential costs for longer paths.
Furthermore, DEFT weights are real numbers. The protocol was designed to simplify in-
tradomain traffic engineering. Subsequently, Xu et al. (2008) proposed PEFT (Penalizing
Exponential Flow-spliTting), a path-based routing protocol that splits traffic over multiple
paths with an exponential penalty on longer paths. The main difference between these
two protocols is that, in terms of flow splitting, DEFT is a link-based protocol, whereas
PEFT is a path-based protocol. In PEFT, the outgoing flow at any node is split among all
shortest paths to a destination node, whereas in DEFT, the outgoing flow is split among
all forwarding links. In PEFT, of an outgoing shortest path link belongs to more than one
shortest path, this link receives more flow than a shortest path link that belongs to only one
shortest path to the destination node.
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For an overview of traffic engineering, the survey by Wang et al. (2008) presents more
than one hundred up-to-date references on different aspects of optimization in Internet
routing.

This paper compares the algorithm presented in Buriol et al. (2005) on DEFT and OSPF,
two link-state routing protocols. The algorithm, originally proposed for OSPF, is adapted
for DEFT. The dynamic shortest path and dynamic flow distribution for DEFT are pre-
sented in detail. The most common dynamic shortest path algorithms used in practice
were proposed by Ramalingam and Reps (1996), whereas to the best of our knowledge,
dynamic OSPF routing update was first proposed by Fortz and Thorup (2000). In this pa-
per, we consider an implementation of DEFT with integer weights, a constrained variant of
the real-weight representation originally proposed by Xu et al. (2007). One reason for this
is that routers currently used in practice only allow integer weights and therefore applying
DEFT with integer weights could be a first step in the direction of using DEFT in practice.
In the remainder of this paper, we refer to DEFT with integer weights as int-DEFT.

The paper is organized as follows. Section 2 presents a description of the general rout-
ing problem. In Section 3, the OSPF and DEFT protocols are described in detail. The
biased random-key genetic algorithm (BRKGA) framework for combinatorial optimiza-
tion is reviewed in Section 4. Sections 5 and 6 describes customizations of the BRKGA
for, respectively, the OSPF and DEFT weight setting problems. Computational results are
presented in Section 7 and concluding remarks are made in Section 8.

2. THE GENERAL ROUTING PROBLEM

Let G = (V, E) be a directed graph modeling a network with a set of routers V' and links
E CV x V. Each link (u,v) € E has a flow capacity ¢, ,. Let D be a demand matrix,
where D,, ,, denotes the traffic flow from source node u to target node v for u,v € V. Let
T C V be the subset of all target nodes in V,ie. T = {v € V: Dy, >0, u € V}
The general routing problem is to find the flows f,, , on each arc (u,v) € E such that
an appropriate objective function is minimized and all demands are delivered from their
source nodes to their target nodes. The objective function to be minimized is

(1) > ®(fuws Cun);
(u,v)EE

where @ is the network-link cost function, which depends on the current flow and the link
capacity. Typically, ® is the piecewise linear function

fuw if fuv/cuw <1/3,
3fuw — 2/3Cuw if1/3 < fuuw/cuw < 2/3,
¢<fu s Cup) = 10 fu,o — 16/3Cu,’u if 2/3 < fu,v/cu,v < 9/10a
' ’ 70 fun — 178/3¢y 0 if9/10 < fuv/cuw <1,
500 fy,0 — 1468/3cy, v if1 < fuu/cuw <11/10,
5000f,,, — 16318/3¢,,» if11/10 < fy, »/Cyvs

proposed in Fortz and Thorup (2000; 2004) and shown in Figure 1.
Let ffm be the flow with destination node ¢ on link (u,v). Then, at all intermediate nodes
v # t any resulting flow must respect flow conservation constraints

2 Z f:i,w - Z f’ttl,,’l) = D’u,t

w:(v,w)eEE u:(u,v)EE
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FIGURE 1. Link cost ® as a function of the link utilization f, ,,/cy ..

and the individual flow aggregation

3) fuw =Y _fho
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As the constraints and the objective function are linear, the optimum solution can be ob-
tained by solving the linear program OPT defined by equations (1), (2), (3), and the non-
negativity constraints f! > 0and f,, > 0, for all (u,v) € E and ¢t € T. The optimal

solution of OPT is a lower bound for the cost of any routing protocol.

3. OSPF AND DEFT ROUTING PROTOCOLS

The OSPF protocol uses weights w,, ,, on links (u,v) € E to determine the flow distri-
bution of demands. The weights are 16-bit integers in the range [0, 2'6 — 1]. Each router
maintains a link-state database of the network topology and the weights, and regularly
exchanges state information with other routers in the same AS to keep the database up-to-
date. To route incoming traffic, a router maintains a shortest path graph using the weights
as distances to all known target nodes within the AS. The outgoing traffic of a node v with
destination ¢ is split equally among all outgoing links on shortest paths to t.

The DEFT protocol relaxes this shortest-path-only restriction and also allows routing
on non-shortest paths. The outgoing traffic of a node u is split proportionally among all
forward links to a target node ¢t. Links belonging to non-shortest paths receive exponen-
tially greater penalties, and consequently carry less flow. Formally, let d, be the distance
from node u to destination node ¢. Then h, , = d, + w.,, — d, is the difference between
the length of the shortest path and the length of the path traversing link (u,v). The non-
normalized flow fraction I in the direction to target node ¢ traversing link (u, v) is defined
as
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and the fraction of the total flow I'(h, ,)/ 2w (uw)e E I'(hi, ,,) is calculated for each out-
going link (u,v) of u. According to Xu et al. (2007), in terms of total link cost and
maximum utilization, there always exists a weight setting such that DEFT has a smaller
total cost than OSPF.

To observe the difference between the link weight setting for OSPF and DEFT, consider
the example in Figure 2. The figure shows a network with a link weight increase in arc
(b,t) from weight P, (left) to weight P} (right). Suppose Py > Pj > P, > 0 and arcs
(u,a) and (u,b) have the same positive weight. In OSPF, the traffic from node u to ¢ is
routed through the shortest path u—b—t. Node a does not receive any flow. The weight
change does not alter this scenario. However, when routing with DEFT, node a receives
a fraction of the traffic and the change in the weight of arc (b, t) causes a change of this
fraction. Increasing the weight of (b,¢) causes a decrease in the amount of flow routed
through b, and a larger part of the flow is now routed through a.

FIGURE 2. Effect in OSPF and DEFT routing when increasing the
weight of arc (b, t).

The WSP for OSPF was formulated in Fortz and Thorup (2000) and different heuristics,
e.g. (Buriol et al., 2005; Ericsson et al., 2002), have been proposed for its solution. DEFT
was proposed in Xu et al. (2007), and to the best of our knowledge, no heuristic other than
the biased random-key genetic algorithm described in this paper has been proposed to find
optimal or near optimal solutions of the WSP for DEFT. A two-stage iterative algorithm
for DEFT with real-valued weights based on non-linear and non-smooth optimization was
proposed in Xu et al. (2007).

4. BIASED RANDOM-KEY GENETIC ALGORITHMS

Genetic algorithms, or GAs, (Goldberg, 1989; Holland, 1975) mimic survival of the
fittest to find good-quality (optimal or near-optimal) solutions to combinatorial optimiza-
tion problems. Solutions are associated with individuals in a population. Each individual’s
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chromosome encodes the solution. Each chromosome is made up of of strings of genes,
each of which takes on a value, called an allele, from some alphabet. The fitness of a
chromosome is correlated with the objective function value of the solution encoded by the
chromosome. Over a number of generations, individuals that make up a population are
evolved. At each generation, offspring of the current population are produced to make
up the population of the next generation. Mutation takes place in genetic algorithms as
a means to escape entrapment in local minima. Individuals are selected at random for
mating. The probability that an individual is selected is proportional to the fitness of that
individual. This way, the genetic material from the most fit individuals is passed on to the
next generation (survival of the fittest).

Bean (1994) introduced genetic algorithms with random keys (RKGAs) for solving
combinatorial optimization problems involving sequencing. In a RKGA, chromosomes
are represented as a vector of random real numbers (random keys) in the interval [0, 1].
A decoder is a deterministic algorithm that takes as input any vector of random keys and
associates with it a solution of the combinatorial optimization problem for which an ob-
jective value or fitness can be computed. For the sequencing problems addressed in Bean
(1994), the decoder sorts the vector of random keys and uses the indices of the sorted keys
to represent a sequence.

The initial population in a RKGA is made up of P vectors of random-keys. Each key
is generated at random in the real interval [0, 1]. After decoding each individual, the popu-
lation is partitioned into two groups of individuals: a smaller group of p. elite individuals,
i.e. those with the best fitness values, and a larger set with the remaining P — p. non-elite
individuals, where p, < P — p.. To evolve the population, a new generation of individ-
uals must be produced. An RKGA uses an elitist strategy to evolve the population from
one generation to the next. In such a strategy, all of the elite individuals of generation k
are copied unchanged to generation k£ + 1. RKGAs implement mutation by introducing
mutants into the population. A mutant is simply a vector of random keys generated in the
same way that an element of the initial population is generated. At each generation a small
set of p,,, mutants is introduced into the population. Discounting the the p, elite individuals
and the p,, mutants, P — p. — p,, additional individuals need to be produced to complete
the P individuals that make up the population of the next generation. These offspring are
produced through mating.

The evolutionary dynamics of a RKGA is described next. After all individuals are
sorted by their fitness values, the population is partitioned into a set of ELITE solutions,
containing most fit solutions, and another of the remaining NON-ELITE solutions. The p,
elite random-key vectors are copied without change to the next population. The p,,, mutant
individuals are randomly generated and placed in the new population. The remainder of
the population of the next generation is completed by crossover. In a RKGA, Bean (1994)
selects two parents to mate at random from the entire population. A biased random-key
genetic algorithm, or BRKGA (Gongalves and Resende, 2009), is similar to a RKGA ex-
cept in the way parents are selected for mating. In a BRKGA, each offspring is generated
by mating one parent chosen at random (with repetition) from the ELITE partition in the
current population and one chosen at random (also with repetition) from the NON-ELITE
partition. This way, an individual can produce more than one offspring in the same gener-
ation. Mating in both RKGA and BRKGA heuristics is done with parameterized uniform
crossover (Spears and DeJong, 1991). Let p. > 0.5 denote the probability that an offspring
inherits the key of its elite parent and let n denote the number of keys in a random-key vec-
tor. For i = 1,...,n, the i-th allele ¢(¢) of the offspring ¢ takes on the value of the i-th
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allele e(z) of the elite parent e with probability p. and the value of the i-th allele &(i) of
the non-elite parent € with probability 1 — p.. This way, an offspring is more likely to
inherit characteristics of the elite parent than those of the non-elite parent (survival of the
fittest). Since we assume that any random key vector can be decoded into a solution, then
the offspring resulting from mating is always valid, i.e. can be decoded into a solution of
the combinatorial optimization problem.

To define a BRKGA, one only needs to define how solutions are encoded and decoded.
In the next two sections, we define BRKGAs for the weight setting problems in OSPF and
DEFT routing.

5. A BIASED RANDOM-KEY GENETIC ALGORITHM FOR OSPF ROUTING

A BRKGA for the weight setting problem (WSP) in OSPF routing was introduced by
Ericsson et al. (2002) and further developed by Buriol et al. (2005). Using parameter
settings proposed by the above papers, we partition the population such that the set of elite
solutions is made up of the 25% most fit individuals (p. = .25p). Likewise, the number
of mutants created every generation consists of 5% of the new population (p,, = .05p). In
addition to the standard BRKGA described in Section 4, another form of mutation is used
in our heuristics for the weight setting problem. For each gene, with a probability of 1%,
each allele of the child inherits, in the crossover operator, a new random key in the interval
(0,1) If the child does not inherit the new random key, then the probability that a child
inherits the allele of the elite parent is 70% (p. = .7). In the remainder of this section, we
describe the decoder.

Given a vector of random keys, the decoder produces a network flow for which the
congestion is computed with the network congestion function (1). An individual is encoded
as a vector x of n = |E| random keys where each random key x; € (0,1), for i =
1,...,n. Given, x, an initial weight vector is defined as w; = [x; X Wax |, Where wiax =
20. This way, initial edge weights are integers in the interval [1,20]. Starting from this
weight vector, a fast local search is applied to try to decrease network congestion by simple
changes in individual edge weights.

The local improvement procedure examines the effect of increasing the weights of a
subset of the arcs. The candidate arcs are all arcs whose weight is smaller than w;,,x, and
the candidates are visited in decreasing order of their routing cost ®( f,, v, ¢y v ). To reduce
the routing cost of a candidate arc, the procedure attempts to increase its weight (within a
given range) to reduce its load. If this leads to a reduction of the overall routing cost, the
change is accepted, and the procedure is restarted. Otherwise, the increase is rejected and
the procedure continues with the next candidate arc.

The local search is repeated until k£ candidate arcs have their weights increased without
improving the solution. We tested different values of k and decided to set £ = 5, as in
the original procedure proposed in Buriol et al. (2005) to explore a small neighborhood.
Keeping the neighborhood small helps to preserve the diversity of the population.

The local search performs several expensive solution evaluations. To speed up this
process, given a weight change, the shortest path graphs, as well as the flow allocation,
are only updated, instead of recomputed from scratch. The next section describes the
adaptation of this algorithm for dealing with DEFT routing.
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6. A BIASED RANDOM-KEY GENETIC ALGORITHM FOR DEFT ROUTING

In this section we present the above described BRKGA modified for DEFT. We main-
tained the entire BRKGA structure as well as the operators described in the previous sec-
tion, only changing the routing procedure. Thus, in this section we mention the modifi-
cations to the decoder when routing is done with DEFT, whereas in Subsection 6.1 the
dynamic flow computation for DEFT is detailed.

Recall that, following OSPF rules, the flow on each node is evenly split among all
shortest path links leaving this node with destination ¢. In DEFT, the load in a node u is
split among all outgoing links (u,v) (and not only on links on the shortest path) in the
direction of ¢, i.e. when d, > d!. Moreover, the load is not split equally among all links as
in OSPFE. DEFT applies an exponential penalty to longer paths between origin-destination
pairs such that more load is routed through links that lead to shorter paths.

As opposed to OSPF, the weights in DEFT are positive real numbers. Therefore, an
implementation of DEFT on current routing hardware, has to decide how to map the real
weights onto the available range of weights, typically a 16-bit integer. Another issue is how
to handle small flow fractions. Even a path that is considerably longer than the shortest
path to the target will receive a flow. This flow, however, can be very small, since the
assigned fraction of flow decreases exponentially. Distributing flow to much longer paths
can increase communication latency.

To obtain a realistic implementation, we solve these problems following the proposal
given in Xu et al. (2007, section II.C). Our implementation works with integer weights,
but uses a scaling parameter p. Actual real-valued distances are obtained by dividing the
integer distances by p. We call our implementation int-DEFT when necessary to avoid
ambiguity. In the experiments described later in this paper, we use a scaling parameter of
p=138.

To avoid routing on long paths with a marginal flow contribution, we introduce a max-
imum gap g, and route flow only on links whose integer gap hfw is at most g. In the
experiments below we use g = 9. This excludes from routing paths which would receive
a fraction of the flow having less than e~ %/18 ~ 0.39% of the flow routed on a shortest
path. Observe that for the special case of a maximum gap equal to zero, DEFT routing
reduces to OSPF routing. In summary, equation (4) is modified to

5 T'(h =
) (P 0 otherwise

. {e—him’ ifd, > d and b, < g

Figure 3 describes in pseudo-code how DEFT rules are implemented. As in OSPF, for each
destination node ¢ € T' we compute the reverse shortest path distance (line 2) and, with a
scan of the arcs, the shortest path graph G* (line 3). In lines 4-22 we detail the procedure
ComputePartialloads that implements the DEFT rules that allows flow be routed
on non-shortest paths. In line 5 we sort the nodes in decreasing order of their distances to
t. Nodes are analyzed one by one, in decreasing distance to the target node. The loop in
lines 8-13 calculates the sum (I';o14:) Of the flow distribution function (5) for each outgoing
link of the current node. We denote by OUT (u) = {v : (u,v) € E} the set of outgoing
links of node w. In line 14, we calculate the total demand f (traversing and leaving the
current node) per unit of I'. In the loop in lines 15-21, for each forward outgoing link of
node u, the flow traversing the link is calculated according to its proportion of I'. In line 24,
the total load of each arc is updated with the partial loads calculated for destination nodes
t € T. Finally, in line 26, the fitness value of the solution is computed.
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procedure CostEvalDEFT(G = (V, E),T,D,(we)cer> 9)

1 forvVteT

2 d =ReverseDijkstra(t,w)

3 G* = ComputeShortestPathGraph(G,w,d)

4 [ComputePartialLoads(d, Gt, D)]

5 H = sorted nodes in decreasing order of distances
6 foreachu € H

7 1_‘toifal =0

8 for eachv € OUT (u)

9 if d!, > d! and hfw < g then
10 hfw =dl + wy,, —d
11 Ttotat = Crotar + €M
12 endif

13 endfor

14 f=Du;+ Zv:(v,u)ect fé,u)/rtotal
15 for eachv € OUT (u)

16 if d!, > d, and h!, , < g then
17 ¥ = e~ huw

18 wo = I

19 endif

20 endfor

21 endfor

22 [end of ComputePartiall.oads]

23 for each (u,v) € E

24 fu,v = fu,v +f1i,v

25  endfor

26 @ =32, )er Hu,v)
end CostEvalDEFT.

FIGURE 3. Pseudo-code of solution evaluation in DEFT.

The local search approach was also adapted. The dynamic shortest path graph algo-
rithm, as well as dynamic flow computation were adapted for DEFT. The general idea of
the local search technique for OSPF described in the previous section has not been modi-
fied, i.e. the algorithm tries to reduce link congestion increasing weights in integer steps.

Observe that the local search is not tuned for DEFT, since it works with integer weights
and therefore only considers weight changes with granularity 1/p, where p is the scale
parameter described above. Therefore, the local search can miss an optimum increase.

6.1. The dynamic flow algorithm for DEFT. The DEFT routing protocol distributes the
flow among shortest and non-shortest paths to a target node. Small changes can cause a
new flow distribution in the network, even when the shortest path graph is unaltered. As a
consequence, we can expect that a change in an arc weight will lead to an altered flow in a
larger number of links. To minimize the computational cost of evaluations of the objective
function by the local search procedure, we developed a dynamic flow update algorithm for
int-DEFT. This algorithm receives a unitary increment of a single arc weight and updates
only the part of the network affected by this change.
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There are three main cases to be analyzed. Let ¢ be the target node. Given a unitary
increment A in the weight of arc (u, v), nodes can be classified in three different cases ac-
cording to their distance change. First, nodes with no outgoing load (leaving or traversing
the node) directed to ¢ are not affected by the increment A. Second, nodes belonging to
paths forwarding to ¢, in the case that before and after the change all forwarding paths tra-
verse arc (u,v), and whose distances have changed, have no modifications in their loads.
The loads traversing these nodes are affected equally by any A variation of the arc weight.
Therefore, the flow distribution is unaltered. In the third case are those nodes that, with
increment A, create alternative paths that do not traverse arc (u,v). Those, and every in-
termediate successor node, have their flow distribution altered and, therefore, have to be
reevaluated. Consider, as an example, Figure 4. Suppose that due to the increment A in
arc (u, v), nodes u and a, that are above the dashed curve, are the nodes whose distances
are affected. Suppose that, before the increment, arc (a, b) did not belong to the shortest
path, but after the increment it does. In this case, some load is sent through arcs (a, b) and
(b, v), while links (a,«) and (u,v) have their loads decreased.

FIGURE 4. Dynamic flow update.

Figure 5 presents the pseudo-code for solution evaluation using the dynamic flow up-
dating procedure. In line 1, the current distance vector is preserved. In lines 3—4, for each
target node ¢ € T the reverse shortest path graph G* is calculated. The loop in lines 6-13
identifies all nodes u with two or more forward outgoing arcs having at least one successor
whose shortest distance to ¢ is not altered (condition2) and a different successor whose
shortest distance to t is increased by exactly A (conditionl). Those nodes represent the
third case described above, and their flows will be altered. They are stored in a heap data
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structure Hy 4,,,, whose keys are pairs of the current and the previous shortest distance
(before the A increase) to t. The heap is ordered by the current distance and, in case of a
tie, by the previous distance. More formally,

(6) (d,dora) < (d,dyg) if d<d or(d=d and deqg < d.).

If two nodes have the same distance, the node with the smaller distance before the update
(do1q) has to be processed first, to avoid evaluating links whose flow was not yet updated.
With the order establish by Equation (6) the flow on links is reset (line 33 of the algorithm)
before being calculated, guaranteeing to not consider the old flows on those links.

The loop in lines 14-18 adds to the heap every intermediate node that is a successor in
the direction of ¢ of a node whose flow was altered. The new flow distribution is calculated
in lines 19-37. Line 27 calculates the total flow leaving the current node. In lines 28-35,
this flow is split proportionally among all outgoing arcs. In line 38, the sum of all flow
fractions is calculated and, finally, in line 40, the total network congestion ® is evaluated.

Since under DEFT the traffic is split among all forwarding links, a larger part of the
graph is affected as compared with OSPF. Thus, our hypothesis that the time savings are
smaller when using dynamic routing in DEFT than in OSPF were confirmed in the com-
putational experiments.

7. EXPERIMENTAL RESULTS

We have studied the performance of the BRKGA on twelve synthetic networks and
another instance with real data from a large tier-1 Internet service provider (ISP). These
are the same instances used in Fortz and Thorup (2004) and Xu et al. (2007) to keep
our results comparable. Table 1 summarizes their characteristics. The columns represent,
respectively, the instance class, the instance name, number of nodes, number of arcs, the
values of link capacities (instance att has a large amount of different values, and so
it was omitted from the table), and the number of origin-destination (O-D) demand pairs.
The instances are classified into four groups: historical data from the ISP Backbone (att),
2-level hierarchical networks (hier), random networks (rand), and Waxman networks
(wax). Further details about the instances can be found in Fortz and Thorup (2000) and
Buriol et al. (2005).

TABLE 1. Instances used in computational experiments.

Instance Name Nodes Links Capacities  O-D pairs
ISP backbone att 90 274 - 272
2-level hierarchy  hier50a 50 148 200 and 1000 2450
hier50b 50 212 200 and 1000 2450
hier100 100 279 200 and 1000 9900
hier100a 100 360 200 and 1000 9900
Random topology rand50 50 228 1000 2450
rand50a 50 245 1000 2450
rand100 100 403 1000 9900
rand100b 100 503 1000 9900
Waxman wax50 50 169 1000 2450
wax50a 50 230 1000 2450
wax100 100 391 1000 9900

wax100a 100 476 1000 9900
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procedure FlowDistributionDEFT(G = (V, E),T,D,(we)eck, (de)eck, A, )

1 dotg = d

2 forvteT

3 d = ReverseDijkstra(G,t,w)

4 G* = ComputeShortestPathGraph(G,w,d)

5 Hg.q,,, = 0 // order according to equation (6)

6 foreachu e V

7 conditionl = condition2 = false

8 for eachv € OUT (u)

9 if d!, = d;; + A then condition] = true
10 if d!, = d!,,; then condition2 = true
11 endfor

12 if condition] and condition2 then InsertHeap(Hg q4,,,, ©)
13 endfor

14 foreachp € Hygq,,,

15 for each g € OUT (p)

16 ifqg & Hgq,,, then InsertHeap(Hy q,,,, q)
17 endfor

18 endfor

19 foreachu € Hyq,,,

20 Ciotar =0

21 for eachv € OUT (u)

22 if d!, > d!, and h! , < g then

23 hfw =dl + wy,, — d,

24 Ciotat = Tiotar + eihz’v

25 endif

26 endfor

27 f = Du,t + Zv:(v,u)th f(tvvu))/rtotal
28 for eachv € OUT (u)

29 if d!, > d! and hz,v < g then

30 vy = e P

31 ’zi,'u =fv

32 else

33 ]i’v =0

34 endif

35 endfor

36 endfor

37 for each (u,v) € E

38 fu,v = fu,v +fzi,u

39  endfor

40 =3, )ep?(u,v)
end FlowDistribut ionDEFT.

FIGURE 5. Pseudo-code of the dynamic flow algorithm.

We used seven different demand matrices for each network, obtained by scaling a basic
demand matrix for each instance by a factor from 6 to 12. The BRKGA was tested with
the following parameters:
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TABLE 2. Speedup of int-DEFT-opt and int-DEFT over int-DEFT-DSSSP.

Implementation Instance
att  hierl00 hierl00a  hier50a hier50b rand100 rand100b
int-DEFT-opt 1.18 1.20 1.31 1.19 1.27 1.32 1.31
int-DEFT 3.74 3.73 3.77 2.89 2.71 3.33 2.89
rand50 rand50a wax100 wax100a  wax50 wax50a
int-DEFT-opt 1.29 1.32 1.30 1.34 1.22 1.30
int-DEFT 2.81 2.68 3.25 3.01 2.86 2.82

Population size: P = 50 individuals,

Weight interval: [1, wpax] = [1,20],

Algorithm running time: 60 minutes,

Probability of inheriting allele from elite parent during crossover: p. = 0.7,
Maximum gap for Af, ,: g = 9,

Scaling parameter: p = 1.8.

We tested different values for these parameters, without relevant changes in the results.
Thus, we decided to preserve the same parameters used in the original algorithm for OSPF
(Buriol et al., 2005).

All experiments were carried out on a cluster of 10 Intel Duo Core processors with 1.23
GHz, 1.0 GB RAM, and running Linux 2.6.18-4. Each run used a single processor.

We performed several analyzes of the results. In the following section, we study the
time savings obtained by the dynamic flow algorithm for DEFT. In the subsequent sec-
tions, we evaluate the solution quality in terms of network congestion and three additional
metrics. For each experiment, we report the average of five runs of the BRKGA for each
combination of network and total demand.

7.1. Experimental evaluation of the dynamic flow algorithm. This experiment explores
the time savings obtained by tuning the implementation to work efficiently for DEFT and
by using the dynamic flow algorithm described in Subsection 6.1 compared to a straightfor-
ward adaptation of the original algorithm proposed for OSPF. We compare three different
implementations:

int-DEFT-DSSSP: A straightforward adaptation to DEFT of the BRKGA proposed
for OSPF. It uses a dynamic single source shortest path (DSSSP) algorithm. The
routing follows DEFT rules and is computed statically.

int-DEFT-opt: int-DEFT-DSSSP, with its data structures tuned to work efficiently
with DEFT, decreasing the running times. In particular, the data structure that
maintains the number of links leaving each node that belongs to a shortest path to
the destination node (in OSPF) is unnecessary in DEFT.

int-DEFT: int-DEFT-opt, but additionally using the dynamic flow algorithm.

It is important to mention that the solution is always the same, independent of the imple-
mentation. However, the running times are affected by the implementation being used.
Figure 6 shows a comparison of the execution time in hours for 1000 generations of the
three implementations and Table 2 shows the speedups of the improved implementations
over int-DEFT-DSSSP. All 13 instances were tested with the highest total demand.

The straightforward adaptation from OSPF is on average 3.12 times slower than the final
version. From the data in Table 2 we can also see that the performance gains are mainly due
to the dynamic flow computation. Tuning the implementation for DEFT results only in an
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FIGURE 6. Running times (in hours) of 1000 generations for three
DEFT routing implementations.

average speedup of 1.27, while the dynamic flow computation algorithm was responsible
for 51% to 68% of the time savings for the set of instances tested. Thus, we conclude
that even for non-shortest path routing protocols like DEFT it is worthwhile to implement
dynamic flow computation.

7.2. Quality of solutions. The second set of experiments compares the quality of the
solutions obtained by the BRKGA when routing with OSPF and DEFT. We report the
optimality gap, i.e. the additional routing cost of the best solution found, as a percentage
of the routing cost of the lower bound given by the solution of OPT. Figures 7 to 11 show
the results for DEFT and OSPF, considering all tested instances.

For the six instances in Figures 7 and 8, DEFT is able to improve over OSPF. In partic-
ular for high total demands, where OSPF has large optimality gaps, DEFT can lower the
gaps considerably.

For the seven instances, shown in Figures 9 to 11, both DEFT and OSPF result in about
the same optimality gap. For the last five instances in Figures 10 and 11, there are several
cases, where DEFT even yields slightly worse results than OSPF.

7.3. Analysis of the routing paths. The third experiment we performed aims to analyze
the number of intermediate nodes involved in the routes of a demand path. For the demand
matrix, we compare the following three metrics:

(1) Path length: the average path length over all paths used for routing for all O-D
demand pairs, measured in number of nodes of the path.

(2) Number of paths: the average number of different paths used for routing the O-D
demand pairs. Two paths are considered different if one path has at least one arc
that does not belong to the other path.



A BRKGA FOR OSPF AND DEFT ROUTING 15

16

— . 18 — 180 - .
int-deft —6— int-deft —o— int-deft
ospf '—07 ospf +f ospf j?

T ) I— |
AR : / |
. /F/ . |
i I T : /

Optimality gap(%)
®
—_—

Optimality gap(%)

Optimality gap(%)

4 /. \ 40 /
2 f/ 2 '/.//6// * /
(/9 e /
0 0 0
22500 30000 37500 45000 52500 2000 3000 4000 5000 1500 2000 2500 3000 3500
Sum of demands Sum of demands Sum of demands
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FIGURE 8. BRKGA optimality gap for instances hier100,
hierl100a, and rand50a measured for OSPF and DEFT solu-
tions.

(3) Percentage of intermediate nodes affected: the average number of intermediate
nodes routing an O-D demand pair, as a percentage of the total number of nodes.

For each instance, we present the minimum, maximum, and average values, as well as the
standard deviation, considering all paths of all O-D demand pairs. The values are the aver-
age of three runs of 1000 generations each. To conduct this experiment, we selected four
instances: att, hier100, hier50a, and wax100. For each instance, we considered
four demand matrices. The next subsections explore each one of the metrics.

7.3.1. Path length. This experiment has the objective of comparing the network delay for
int-DEFT and OSPF measured as the length of the paths, i.e., the number of nodes that
comprises the paths. We report the shortest path, the longest path, and the average path
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size among all paths of all O-D demand pairs. The measure is calculated for int-DEFT and
OSPF for the best solution of the 1000th generation, for four demand matrices of the four
instances used in the experiments. Figure 12 presents the results for int-DEFT and OSPF.
From the plots, it is possible to observe that the path lengths in int-DEFT are about 40%
longer than in OSPF. For example, for the demand matrix with the largest sum of demands,
the average path lengths found by int-DEFT are 10.63, 12.80, 8.2, and 6.92 hops, whereas
the corresponding values for OSPF are 7.94, 9.03, 6.01, and 4.47 hops. If we compare
the path length with the shortest possible length as given by the topology of the instances,
OSPF adds on average 2 hops, compared to 4.8 hops in int-DEFT. In a telecommunication
network, it is desirable to maintain the path lengths as short as possible. One reason is
that as the path length increases, so does the expected number of demand pairs affected
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FIGURE 12. Average path length per O-D pair for demands 6, 8, 10, and
12, and 1000 generations. Upper row: DEFT routing. Lower row: OSPF
routing.

by a failure. Thus, the length of a path is directly related to the quality of service of a
telecommunication network.

With respect to the minimum path length observed, they are the same for OSPF and int-
DEFT. The minimum value is four for instance att, and two for the other three instances.
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FIGURE 13. Average number of paths per O-D pair for demands 6, 8,
10, and 12, and 1000 generations. Upper row: DEFT routing. Lower
row: OSPF routing.

That was expected, since both protocols route through the shortest path, and a path of
length two indicates that the path is composed of a single direct link. Instance att does
not have O-D demand pairs between all pairs of nodes, while the other instances do. Thus,
it is possible to have the minimum value larger for att than for the other instances.

From the analysis of results, two other conclusions can be drawn. The path length is
almost constant through the generations for all four instances tested (we do not present
plots for this experiment). Finally, as we can see in the plots, the path lengths vary only
slightly with the total demand.

7.3.2. Number of paths. This experiment measures the minimum, maximum, and average
number of paths among all paths of all O-D demand pairs. The measure is calculated
for int-DEFT and OSPF for the best solution of the 1000th generation, for four demand
matrices of four instances. Two paths are considered different if one has at least one arc
that the other does not have. Thus, a path is considered different from a set of paths if it is
different of each path of the set. Figure 13 presents the measures for the solution found by
int-DEFT and OSPFE.

The average number of paths found by int-DEFT is about 10 times higher than the
average number found in OSPF solutions. For example, considering the demand matrix
with the largest total demand, the average values for int-DEFT are 10.13, 12.67, 5.08,
and 9.23, whereas the corresponding values for OSPF are 1.63, 1.77, 1.36, and 1.08. The
difference between the number of paths between int-DEFT and OSPF could be even larger
if we use a larger threshold for hfw. We decided to use a threshold equal to nine to avoid
having a very small amount of load for a demand pair flowing in a link.
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FIGURE 14. Percentage of intermediate nodes for demands 6, 8, 10, and
12, and 1000 generations for DEFT. Upper row: DEFT routing. Lower
row: OSPF routing.

From the figures, one can observe that the number of paths changes slightly with the
total demand. Further experiments also showed that the number of paths is about the same
over the generations.

7.3.3. Percentage of intermediate nodes affected. This experiment has the objective of
showing the distribution of paths in the network, i.e., it presents the percentage of nodes
that are part of some path used in an O-D demand pair. It measures the smallest, largest,
and average percentage of intermediate nodes among all paths of all O-D demand pairs.
The measure is calculated for int-DEFT and OSPF for the best solution of the 1000th gen-
eration, for four demand matrices of the four instances used in the experiments. Figure 14
depicts the number of intermediates nodes for int-DEFT and OSPF.

In the experiments performed, the percentage of intermediate nodes of int-DEFT is
almost twice the percentage of intermediate nodes of OSPF. Since int-DEFT sends flows
among all forward links, it is expected that a larger part of the graph would be used for
routing a demand pair. As for the path length, the larger the set of intermediate nodes, the
higher the probability of a demand pair being affected in the case of a link or node failure.
For example, considering the demand matrix with the largest total demand, the average
percentages of intermediate nodes used in the int-DEFT solution are 13.98, 12.23, 18.93,
and 12.61, whereas the corresponding values for the OSPF solution are 8.61, 8.37, 11.83,
and 4.57.

The minimum percentage of intermediate nodes is about the same for int-DEFT and
OSPF. The maximum percentage for DEFT is about twice the maximum percentage found
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by OSPF in most instances. On instance wax100 the percentage of intermediate nodes in
int-DEFT is three times the percentage of OSPF.

We also observed that the percentage of intermediate nodes is about the same throughout
the generations of the algorithm. Finally, as can be observed in the figures, the values did
not change much when different demand matrices were considered.

8. CONCLUDING REMARKS

This paper presented a biased random-key genetic algorithm (BRKGA) for the weight
setting problem in DEFT routing with integer weights. Our main goal was to show that
the BRKGA originally proposed by Ericsson et al. (2002) and Buriol et al. (2005) for the
weight setting problem in OSPF routing could be adapted for the integer weight setting
problem in DEFT routing (int-DEFT).

We compared results produced for weight setting in OSPF and int-DEFT routing. The
results show that, using identical available resources, int-DEFT produces less network con-
gestion than OSPF routing does. However, int-DEFT produces solutions with longer path
lengths, larger percentage of intermediate nodes, and larger number of paths. These are all
undesirable characteristics since a link failure will result in a larger expected number of
affected O-D demand pairs.

In comparison with the two-stage method proposed for DEFT (Xu et al., 2007), the
algorithm for int-DEFT routing, proposed in this paper, finds solutions with higher network
congestion. A direct comparison requires either that we extend the BRKGA proposed in
this paper to handle real-valued weights or adapt the two-stage method to handle integer
weights.

A natural next step for this work is to extend the single-objective nature of the prob-
lem to one that is multi-objective. One may require, for example, that two conflicting
objectives, such as the minimization of congestion and the minimization of delay be si-
multaneously optimized. Since genetic algorithms are commonly used for multi-objective
optimization (Konak et al., 2006), biased random-key genetic algorithms should be well
suited to address these multi-objective routing problems.

ACKNOWLEDGMENTS

The authors would like to thank Dahai Xu for allowing us to experiment with his DEFT
solver and for helpful comments.

REFERENCES

J. C. Bean. Genetic algorithms and random keys for sequencing and optimization. ORSA
J. on Computing, 6:154-160, 1994.

W. Ben-Ameur and E. Gourdin. Internet routing and related topology issues. SIAM J. on
Discrete Mathematics, 17:18—49, 2003.

A. Bley. Integer Programming and Combinatorial Optimization, volume 3509/2005 of
Lecture Notes in Computer Science, chapter On the Approximability of the Minimum
Congestion Unsplittable Shortest Path Routing Problem, pages 97-110. Springer Berlin
/ Heidelberg, 2005.

P. Brostrom and K. Holmberg. Multiobjective design of survivable IP networks. Annals of
Operations Research, 147:235-253, 2006.

L. S. Buriol, M. G. C. Resende, C. Ribeiro, and M. Thorup. A hybrid genetic algorithm
for the weight setting problem in OSPF/IS-IS routing. Networks, 46(1):36-56, 2005.



A BRKGA FOR OSPF AND DEFT ROUTING 21

M. Ericsson, M.G.C. Resende, and P. Pardalos. A genetic algorithm for the weight setting
problem in OSPF routing. J. of Combinatorial Optimization, 6:299-333, 2002.

B. Fortz and M. Thorup. Internet traffic engineering by optimizing OSPF weights. In
INFOCOM 2000, pages 519-528, 2000.

B. Fortz and M. Thorup. Increasing internet capacity using local search. Computational
Optimization and Applications, 29(1), 2004.

R. Girdo-Silva, J. Craveirinha, and J. Climaco. Hierarchical multiobjective routing in Mul-
tiprotocol Label Switching networks with two service classes: A heuristic solution. In-
ternational Transactions in Operational Research, 16:275-305, 2009.

D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, 1989.

J.F. Gongalves and M.G.C. Resende. Biased random-key genetic algorithms for combina-
torial optimization. Technical report, AT&T Labs Research, Florham Park, NJ 07932,
2009.

J.H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, 1975.

K. Holmberg and D. Yuan. Optimization of internet protocol network design and routing.
Networks, 43:39-53, 2004.

A. Konak, D.W. Coit, and A.E. Smith. Multi-objective optimization using genetic algo-
rithms: A tutorial. Reliability Engineering and System Safety, 91:992—-1007, 2006.

P. Moscato. Memetic algorithms. In P.M. Pardalos and M.G.C. Resende, editors, Hand-
book of applied optimization. Oxford University Press, 2002.

G. Ramalingam and T. Reps. An incremental algorithm for a generalization of the shortest-
path problem. J Algorithms, 21:267-305, 1996.

W.M. Spears and K.A. DeJong. On the virtues of parameterized uniform crossover. In
Proceedings of the Fourth International Conference on Genetic Algorithms, pages 230—
236, 1991.

N. Wang, K. Ho, G. Pavlou, and M. Howarth. An overview of routing optimization for
internet traffic engineering. IEEE Communications Surveys & Tutorials, 10(1):36-56,
2008.

D. Xu, M. Chiang, and J. Rexford. DEFT: Distributed exponentially-weighted flow split-
ting. In Proc. 26th IEEE Conf. on Computer Communicatios (INFOCOM), pages 71-79,
May 2007.

D. Xu, M. Chiang, and J. Rexford. Link-state routing with hop-by-hop forwarding can
achieve optimal traffic engineering. In Proc. 27th IEEE Conf. on Computer Communi-
catios (INFOCOM), pages 466474, 2008.

(R. Reis) UNIVERSIDADE FEDERAL DO R10 GRANDE DO SUL, INSTITUTO DE INFORMATICA, AV. BENTO
GONCALVES, 9500, CAMPUS DO VALE, BLOCO IV, BAIRRO AGRONOMIA, PORTO ALEGRE, RS, BRAZIL.
E-mail address: rsreis@inf.ufrgs.br

(M. Ritt) UNIVERSIDADE FEDERAL DO R10 GRANDE DO SUL, INSTITUTO DE INFORMATICA, AV. BENTO
GONCALVES, 9500, CAMPUS DO VALE, BLOCO IV, BAIRRO AGRONOMIA, PORTO ALEGRE, RS, BRAZIL.
E-mail address: mrpritt@inf.ufrgs.br

(L.S. Buriol) UNIVERSIDADE FEDERAL DO RI0 GRANDE DO SUL, INSTITUTO DE INFORMATICA, AV.
BENTO GONCALVES, 9500, CAMPUS DO VALE, BLOCO IV, BAIRRO AGRONOMIA, PORTO ALEGRE, RS,
BRAZIL.

E-mail address: buriol@inf.ufrgs.br

(M.G.C. Resende) ALGORITHMS AND OPTIMIZATION RESEARCH DEPARTMENT, AT&T LABS RESEARCH,
180 PARK AVENUE, ROOM C241, FLORHAM PARK, NJ 07932 USA.
E-mail address, M.G.C. Resende: mgcr@research.att.com



