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ABSTRACT. Population growth and the massive production of automotive ve-
hicles have lead to the increase of traffic congestion problems. Traffic con-
gestion today is not limited to large metropolitan areas, but is observed even
in medium-sized cities and highways. Traffic engineering can contribute to
lessen these problems. One possibility, explored in this paper, is to assign tolls
to streets and roads, with the objective of inducing drivers to take alterna-
tive routes, and thus better distribute traffic across the road network. This
assignment problem is often referred to as the tollbooth problem and it is NP-
hard. In this paper, we propose mathematical formulations for two versions
of the tollbooth problem that use piecewise-linear functions to approximate
congestion cost. We also apply a biased random-key genetic algorithm on a
set of real-world instances, analyzing solutions when computing shortest paths
according to two different weight functions. Experimental results show that
the proposed piecewise-linear functions approximate the original convex func-
tion quite well and that the biased random-key genetic algorithm produces
high-quality solutions.

1. INTRODUCTION

Transportation systems play an important role in modern life. Due to popu-
lation growth and the massive production of vehicles, traffic congestion problems
in metropolitan areas have become a common daily occurrence. To a commuter
or traveler, congestion means loss of time, potentially missed business opportuni-
ties, and increased stress and frustration. To an employer, congestion means lost
worker productivity, reduced trade opportunities, delivery delays, and increased
costs (Wen, 2008). For example, a significant aspect is the value of wasted fuel and
loss of productivity. In 2010, traffic congestion cost about US$115 billion in the
439 urban areas of the United States alone (Schrank et al., 2011).

Minimizing driving time directly impacts quality of life. One way to reduce travel
time is by lowering congestion through the redistribution of traffic throughout the
network. Improvements in transportation systems require a careful analysis of
several factors. Different alternatives are evaluated using models that attempt
to capture the nature of transportation systems and thus allow the estimation of
the effect of future changes in system performance. Performance measures include
efficiency in time and cost, security, and social and environmental impact, among
others.
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2 TOLLBOOTH OPTIMIZATION

Several strategies have been proposed to reduce traffic congestion. Among them,
the deployment of tolls on certain roads can induce drivers to choose alternative
routes, thus reducing congestion as the result of better traffic flow distribution.
Naturally, tolls can increase the cost of a trip, but this can be compensated with less
travel time, reduced fuel cost, and lower amounts of stress. In the 1950s, Beckmann
et al. (1956) proposed the use of tolls with this objective. This idea has made
its way into modern transportation networks. In 1975, Singapore implemented a
program called FElectronic Road Pricing or ERP. Several cities in Europe and the
United States, such as in London and San Diego, have begun to charge toll on
their transportation networks (Bai et al., 2010). In fact, tolls are being deployed
for traffic engineering in many small as well as large cities around the world.

Determining the location of tollbooths® and their corresponding tariffs is a com-
binatorial optimization problem. This problem has aroused interest in the scientific
community not only because of its intrinsic difficulty, but also because of the social
importance and impact of its solution.

The optimization of transportation network performance has been widely dis-
cussed in the literature. The minimum tollbooth problem (MINTB), first intro-
duced by Hearn and Ramana (1998), aims at minimizing the number of toll loca-
tions to achieve system optimality. Yang and Zhang (2003) formulate second-best
link-based pricing as a bi-level program and solve it with a genetic algorithm. In
Bai et al. (2010) it is shown that the problem is NP-hard and a local search heuris-
tic is proposed. Another similar problem is to minimize total revenue (MINREV).
MINREYV is similar to MINSYS, but in this class of problems tolls can be nega-
tive as well as positive, while MINSYS does not accept negative tolls (Hearn and
Ramana, 1998; Dial, 1999b;a; Hearn and Yildirim, 2002; Bai et al., 2004). For a
complete review of the design and evaluation of road network pricing schemes we
refer the reader to the survey by Tsekeris and Vof3 (2009).

Two important transportation network concepts were introduced by Wardrop
(1952): user equilibrium (UE) and system optimal (SO). The former is related to
the equilibrium obtained when each user chooses a route that minimizes his/her
costs in a congested network. In an UE state, any user can reduce his/her own
travel cost by changing routes. Differently, SO is related to a state of equilibrium
with minimum average journey time. This occurs when the users cooperate to
choose their routes. However, the user usually chooses his/her own route in a
non-cooperative manner. In a simplistic modeling behavior, users can choose their
routes by different criteria. One possible simplification assumes that users choose
their routes considering only fixed costs such as time to travel, or a value that
depends on the congestion, or even only the toll values. These situations do not
correspond to user equilibrium, but model different behaviors of the users.

In this paper, we approach the tollbooth problem by routing on shortest paths
as first studied in Buriol et al. (2010). The objective is to determine the loca-
tion of a fixed number K of tollbooths and set their corresponding tariffs so that
users travel on shortest paths between origin and destination, reducing network
congestion. We calculate shortest paths according to two weight functions. In the
first, the weights correspond to the tariffs of the tolled arcs. The second function
considers as the weight of each arc its toll tariff added to its free flow time, where

IWe use the term tollbooth to refer to both traditional tollbooths as well as to sensors that
read radio-frequency identification (RFID) tags from vehicles.
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free flow time of an arc is defined to be the congestion-free time to traverse the
arc. We also present a mathematical model for the minimum average link travel
time and the tollbooth problem. We further propose two piecewise-linear functions
that approximate an adapted convex travel cost function of the Bureau of Public
Roads (1964) for measuring link congestion. Finally, we extend the work in Buriol
et al. (2010) presenting a larger set of experiments, considering a new arc value to
calculate shortest paths, a review of the algorithm components, such as the local
search, and a more detailed review of the behavior of the algorithm, including a
new set of instances and an analysis of characteristics of the final solutions.

This paper is organized as follows. In Section 2 we present mathematical models
for the minimum average link travel time, the tollbooth problem, and two approx-
imate piecewise-linear functions for travel cost. The biased random-key genetic
algorithm with local search proposed in Buriol et al. (2010) is presented in Sec-
tion 3. Computational results are reported in Section 4. Finally, conclusions are
drawn in Section 5.

2. PROBLEM FORMULATION

A road network can be represented as a directed graph G = (V, A) where V
represents the set of nodes (street or road intersections or points of interest), and
A the set of arcs (street or road segments). Each arc a € A has an associated
capacity c,, and a time t,, called the free flow time, necessary to transverse the
unloaded arc a. To calculate the congestion on each link, a potential function @,
is computed as a function of the load or flow ¢, on arc a, along with o, and g,
two real-valued arc-tuning parameters. In addition, let

K = {(o(1),d(1)), (0(2),d(2)), - -, (o(|K),d(|K[)} SV x V/

denote the set of commodities or origin-destination (OD) pairs, where o(k) and d(k)
represent, respectively, the origination and destination nodes for £ = 1,...,|K].
Each commodity k has an associated demand of traffic flow dy, = do(1),acx), i-e., for
each OD pair (o(k), d(k)), there is an associated flow dj, that emanates from node
o(k) and terminates in node d(k). In this paper we address the problem in which all
the demand is routed on the network, such that traffic congestion is minimized. To
encourage traffic to take on particular routes, we resort to levying tolls on selected
street or road segments.

Before we describe our mathematical models, some notation is introduced. We
denote by IN(v) the set of incoming arcs to node v € V, by OUT(v) the set of
outgoing arcs from node v € V, by a = (at, ap) € A a directed arc of the network,
where a; € V and ap € V are, respectively, the tail and head nodes of arc a, by
S = Zlfill dy, the total sum of demands, and by @ C V the set of destination nodes.
Moreover, we denote by @, the traffic congestion of arc a € A, and by K the number
of tollbooths to deploy (tolls are levied on users of the network at tollbooths). The
values of ¢ and ¢! are approximations of traffic congestion cost on arc a € A given
by piecewise-linear functions. We note that throughout the paper we refer to flow
and load interchangeably, as we do for commodity and demand.

In the next subsection we present a mathematical model of a relaxation of the
tollbooth problem that does not take into account shortest paths. In Subsection 2.2
a complete model for the tollbooth problem is presented and in Subsection 2.3 we
propose two piecewise-linear functions that approximate the convex cost function.
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2.1. Model for minimization of average user travel time (MM1). The eval-
uation of the traffic congestion cost can be defined in different ways according to
specific goals. In this paper we use the potential function

O =3 caPa, where &, = %tu 1+ ﬂa(%)%], for all a € A,

which is the convex travel cost function of the Bureau of Public Roads (1964)
for measuring link congestion scaled by the term ¢,/S. This way, the potential
function evaluates the average user travel time over all trips. Function ®, is convex
and nonlinear and is a strictly increasing function of [,.

A mathematical programming model of average user travel time is

(1) min ® = > lata[1+ Ba(la/ca)™]/S
a€cA
subject to:
(2) lo = al Va€ A,
qeQ
(3) dooal- Y al=dyg, WweV\{g}, Vg€ Q,
aceOUT (v) a€IN (v)
(4) x> 0,Va € A, Vg € Q,
(5) Ly, >0, Va € A.

Its goal is to determine flows on each arc such that the average user travel time is
minimized. In this model, decision variables ¢ € R™ represent the total flow to
destination ¢ € Q on arc a € A, and variables £, € RT represent the total flow on
arc a € A. Objective function (1) minimizes average user travel time. Constraints
(2) define total flow on each arc a € A taking into consideration the contribution
of all commodities. Constraints (3) guarantee flow conservation, and (4)—(5) define
the domains of the variables.

This model computes flow distribution without taking into account that users
take a least cost route, providing a lower bound for the tollbooth problem to be
described in the next subsection.
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2.2. Model for the tollbooth problem (MM2). A mathematical programming
model for the tollbooth problem is

6 min @ =3 Lata[1+ Balla/ea)™] /S

acA
subject to:
(7) by = Z zd Va € A,
qeQ
(8) doowl- Y al=dug, WweV\{g) Vee g,
a€OUT (v) a€IN (v)
9) Co +wq+0f, =61 >0, Vae A, Vge Q,

) 0d =0, Vg€ Q,
) Co+we +0% =01 > (1 —yl)/My, Vac A, VqgeQ,
) Co 4w+ 0%, =08 < (1—yl)My, Va € A, Vg€ Q,
13) Myl >zl Va e A, Vg € Q,
)
)
)

14 Mgyl + Msyf < 2Msz — xl + x, Ya,b € Ay, Y €V, Vg € Q,
15 Pips < wa < Pupa, Ya € A,
16 D pa=K, Vae A,
a€cA
17 23>0, Va e A, Vg € Q,
18 0y, >0, Va € A,

we >0, Va € A,
62>0,VYge Q, VeV,
21) pa € {0,1}, Va € A.

This model seeks to levy tolls on K arcs of the transportation network such that
the average user travel time is minimized if traffic is routed on least-cost paths.
Here, the cost of a path is defined to be the sum of the tolls levied on the arcs of
the path, or the sum of tolls and free flow times. We later describe these arc weight
functions in more detail.

The decision variables for this model determine whether an arc will host a
tollbooth and the amount of toll levied at each deployed tollbooth. Denote by
we € {0, P, P, +1,...,P,} the toll tariff levied on arc a € A, where P, P, € N*
are the minimum and maximum tariff values, respectively. For convenience we de-
fine P, = 1. If no toll is levied on arc a, then w, = 0. The binary decision variable
pe = 1 if a tollbooth is deployed on arc a € A. The auxiliary binary variable
yd = 1if arc a € A is part of a shortest path to destination node g € Q. Finally,
auxiliary variable 0¢ is the shortest-path distance from node v € V' to destination
node g € Q, and the constants M;, Mo, and M3 are sufficiently larger numbers.

Objective function (6) minimizes average user travel time. Constraints (7) define
the total flow on each arc a € A while constraints (8) impose flow conservation.
The other constraints force the flow of each commodity to follow the shortest path
between the corresponding OD pair. An arc a belongs to the shortest path to
destination ¢ if the distance J7, — d¢, is equal to the arc cost, which in this case is
Cy+wg, where C, will be mtroduced later in this subsection. Thus, constraints (9)
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define the shortest path distance for each node v € V' and each destination ¢ € Q.
For consistency, constraints (10) require, for all ¢ € Q, that the shortest distance
from ¢ to itself be zero. Constraints (11) and (12) together with (9) and (10)
determine whether arc a € A belongs to the shortest path and thus determine the
values of y4, for ¢ € Q. Constraints (11) require that an arc that does not belong to
the shortest path have reduced cost Cy +w,+37, —62 > 0. Constraints (12) assure
that if the reduced cost of arc a € A and destination ¢ € Q is equal to zero, then arc
a belongs to the shortest path to destination ¢, i.e. y¢ = 1. In the computational
experiments of Subsection 4.2, we used M; = 100 and My = 1000. Constraints
(13) assure that flow is sent only on arcs belonging to a shortest path. Constraints
(14) are the even-split constraints. They guarantee that flow is split evenly among
all shortest paths. In these constraints, AQO UT(v) is the set of all ordered groups of
two distinct elements of OUT (v). We later discuss these constraints in more detail.
Constraints (15) limit the minimum and maximum tariff for a deployed tollbooth.
Constraints (16) require that exactly K tolls be deployed. The remaining constraints
define the domains of the variables.

Constraints (14) come in pairs for each node v € V. For every pair of outgoing
links a € OUT (v) and b € OUT(v): {a,b} € Al p(,) and {b,a} € A%y, there
are two corresponding constraints. They model load balancing by assuring that if
the flow from node v € V to destination ¢ € Q is routed on both arcs a € A and
be A e if y? =yl =1, then the flow on these arcs must be evenly split, i.e.
x? = x{. To see this, suppose yd =y} = 1. The constraint for pair {a, b} € AQO UT(v)
implies that z¢ < z{. By symmetry the constraint for pair {b,a} € A%UT(U) implies
that #¢ > z]. Consequently, ¢ = x{. Note that taking M3 = maxgeo (3 cv dv,q)
we assure that the right-hand-side of constraint (14) is bounded from below by M3,
making these constraints redundant for pairs of links with at most one of either y*
or yl’f equal to one.

A model for OSPF routing, which also considers shortest paths and even flow
splitting, was previously proposed in Brostrom and Holmberg (2006). In their
model a shortest path graph is built for each OD pair, while we opted for building
a shortest path graph from all nodes to each node ¢ € Q. This modification reduces
the number of variables and constraints of the model.

We evaluate shortest paths according to two weight functions. In the first ap-
proach, called SPT (Shortest Path Toll), we define the weight of an arc a € A to
be the tariff w, levied on that arc. In this case, we set C, = €, a sufficiently small
value. This way, when there are one or more zero-cost paths, the flow is always
sent along paths having smallest hop count. In the second approach, called SPTF
(Shortest Path Toll+Free flow time), we define the weight of an arc a € A to be
the tariff w, levied on the arc plus the free flow time ¢, of the arc, i.e. parameter
C, =ty,+ €. The value € > 0 is added to the cost with the same goal as in the case
of SPT since it is possible that ¢, = 0 for one or more arcs a € A.

2.3. Piecewise-linear functions for the models. The performance of mixed in-
teger linear programming solvers has improved considerably over the last few years.
The two mathematical programming models presented so far have a nonlinear ob-
jective function ®. To apply these solvers, one must first linearize ®, resulting in
an approximation of the nonlinear objective function. One possible option is to
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approximate the nonlinear function by a piecewise linear function. Fortz and Tho-
rup (2004) proposed a piecewise-linear function for a general routing problem to
approximate network congestion cost. Ekstrom et al. (2012) describe an iterative
approximation by piecewise linear function for the travel time and total travel time,
resulting in a mixed integer linear program.

In this subsection, we propose two piecewise-linear approximations of the func-
tion ® = > ., ®,. The first linearization ¢, is an overestimation, and under
certain conditions is an upper bound of ®. The second linearization ¢! is an under-
estimation and provides a lower bound of ®. It is possible to apply these lineariza-
tions to any model with this type of nonlinear function. We apply them to models
MM1 and MM2.

Let © be the set of constraints (2)—(5) or (7)—(21) of the previously described
mathematical models. For the case where 2 represents the constraints of the MM1
model the approximation is called LMM1. On the other hand, when ) represents
the constraints of the MM2 model, we call the approximation LMMZ2.

In approximation ¢, the cost function of each arc a € A is composed of a series
of line segments sequentially connecting coordinates

(X07 (I)a(XO)>7 (Xla q)a(Xl))’ EREE) (Xm (I)G(Xn))>

where values Xy, X1,...,X,, are given such that Xo = 0, and for i = 1,...,n,
X;eRand X; > X;_1.

If we denote the cost on arc a € A by ¢¥, then the resulting mathematical
programming model of the overestimation ¢* is

(22) min Z O

a€cA
subject to:
(23) Constraints € are satisfied,
(24) (mh/ca)la + b < Q¥ Ya€ A Vi=1,...,n,
(25) ¢, >0, Va € A,
where
my, = (Pa(Xi) = Pa(Xi-1))/(Xi — Xim1),
by = ®,(X;) — Xyml,
where

(I’a(Xi) = Xicata(l + /Ba(Xi)aa)/S

for Xg =0 < X; < --- < X,,. Objective function (22) minimizes the approximation
of average user travel time. Constraints (24) evaluate the partial cost on each arc by
determining the approximate value ¥ for ®, according to load l,. Constraints (25)
define the domain of the variables.

The linearization requires the definition of the terms Xg, X1, ..., X,, whose values
are computed as a function of ¢, /c,. The number of these terms can be arbitrarily
defined according to the accuracy required for the linearization of the cost function,
or according to characteristics of the set of instances. This linearization requires a
balance between the accuracy of the computed solution and the time to compute
the linearization. With a large number n, the linearization tends to provide a better
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approximation of the original value, while a small value of n can save time while
solving the model since each element entails |A| additional constraints.

A second linearization, which we denote by ¢!, is an underestimation and gives
us a lower bound on ®,. The mathematical model of this linearization is similar
to that of the overestimation. However, to estimate @é, we first compute the slope
me(z) of @4 at x = (X;-1 + X;)/2, fori=1,...,n, as

0P, te | (g 1)t fBex*e

mMa() = or S ca*S

Given = and m,(z), the independent term can be easily computed.
Linearizations ¢!, and ¢ produce, respectively, an underestimation and an over-
estimation of ®,, as Proposition 1 states.

Proposition 1. Let " =3 ., 0%, o' =3 o4 ¢k, and as before ® =3 4 P
Let Xo,X1,...,X, be the values for which the approximation is computed. If
lofca < Xp,Va € A, then ot < & < .

Proof. As ® is convex, by construction ¢!, < ®,, then ® = Yoaca®a > uca @l =
¢!. Thus ® > ¢'. Furthermore, if £,/c, < X,, then by construction p* > ®,,

which implies that " = > @i > > 4 Pq = ®. Thus " > ®. Therefore
Pl <P <t O

Note that for Proposition 1 to hold we do not make the assumption that the
underestimation ¢! be a lower bound of ®, while the overestimation " requires
that £, /c, < Xp,,Va € A be true for the proposition to hold.

A representation of the functions ¢, ¢! and @ is depicted in Figure 1. It
shows the cost function ® (solid line) as well as the piecewise-linear cost functions
©* and ¢! for an arc @ € A with t, = 5, ¢, = 200, ag = 4, B, = 0.15, and
S = 1000 using with {Xg, X1,..., Xs} = {0,0.65,1,1.25,1.7,2.7,5}. Observe that
there is a higher concentration of points X in the range i—i = [0.65; 1.25]. This dense
concentration of points in this region is used because the flow on the majority of the
arcs is concentrated around their capacity. Thus, to obtain a good approximation
requires that several X values be set to values around i—‘; = 1. Note that a ratio of

i—‘: > 1 indicates that the arc is overloaded.

3. A BIASED RANDOM-KEY GENETIC ALGORITHM

In this section we describe the biased random-key genetic algorithm (BRKGA)
for the tollbooth problem, proposed in Buriol et al. (2010).

A random-key genetic algorithm (RKGA) is a metaheuristic, originally proposed
by Bean (1994), for finding optimal or near-optimal solutions to optimization prob-
lems. RKGAs encode solutions as vectors of random keys, i.e. randomly generated
real numbers in the interval (0,1]. A RKGA starts with a set (or population) of p
random vectors of size n. Parameter n depends on the encoding while parameter
p is user-defined. Starting from the initial population, the algorithm generates a
series of populations. Each iteration of the algorithm is called a generation. The al-
gorithm evolves the population over the generations by combining pairs of solutions
from one generation to produce offspring solutions for the following generation.

RKGAs rely on decoders to translate a vector of random keys into a solution
of the optimization problem being solved. A decoder is a deterministic algorithm
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FIGURE 1. Comparison of the cost function with the linear
piecewise-linear cost function.

that takes as input a vector of random keys and returns a feasible solution of the
optimization problem as well as its cost (or fitness).

At the k-th generation, the decoder is applied to all newly created random keys
and the population is partitioned into a smaller set of p. elite solutions, i.e., the
fittest p. solutions in the population and another larger set of p — p. > p. non-
elite solutions. Population k + 1 is generated as follows. All p, elite solutions of
population k are copied without change to population k£ + 1. This elitist strategy
maintains the best solution on hand. In biology, as well as in genetic algorithms,
evolution only occurs if mutation is present. As opposed to most genetic algorithms,
RKGAs do not use a mutation operator, where each component of the solutions is
modified with small probability. Instead p,, mutants are added to population k4 1.
A mutant is simply a vector of random keys, generated in the same way a solution
of the initial population is generated.

With pe + p., solutions accounted for population & + 1, p — pe — pim additional
solutions must be generated to complete the p solutions that make up population
k 4 1. This is done through mating or crossover. In the RKGA of Bean (1994),
two solutions are selected at random from the entire population. One is parent-A
while the other is parent-B. A child C' is produced by combining the parents using
parameterized uniform crossover (Spears and DeJong, 1991). Let p4 > 1/2 be the
probability that the offspring solution inherits the key of parent-A and pg = 1—p4
be the probability that it inherits the key of parent-B, i.e.

a; with probability p4,
=
’ b; with probability pp =1 — pa,

where a; and b; are, respectively, the i-th key of parent-A and parent-B, for i =
1,...,n. This crossover always produces a feasible solution since c is also a vector
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of random keys and by definition the decoder takes as input any vector of random
keys and outputs a feasible solution.

Biased random-key genetic algorithms (Gongalves and Resende, 2011) differ from
Bean’s algorithm in the way parents are selected. In a BRKGA parent-A is always
selected at random from the set of p, elite solutions while parent-B is selected at
random from the set of p — p. non-elite solutions. The selection process is biased
since an elite solution s has probability Pr(s) = 1/p. of being selected for mat-
ing while a non-elite solution 5 is selected with probability Pr(s) = 1/(p — pe).
Since p — pe > pe, then Pr(s) > Pr(5). In addition, elite solutions have a higher
probability of passing on their random keys since probability p4 > 1/2. Though
the difference between RKGAs and BRKGAs is small, the resulting heuristics be-
have quite differently. Experimental results in Gongalves et al. (2014) show that
BRKGASs are almost always faster and more effective than RKGAs.

To describe a BRKGA, one need only show how solutions are encoded and de-
coded, what choice of parameters p, p., pm, and ps were made, and how the
algorithm stops. We describe the encoding and decoding procedures next and give
values for parameters as well as the stopping criterion in Section 4.

Solutions are encoded as a 2 X |A| vector X, where |A| is the cardinality of the
set A of arcs in the network. The first |A| keys correspond to the random keys
which define the toll tariffs while the last |A| keys correspond to a binary vector b,
with K positions set to one, used to indicated tolled arcs.

The decoder has two phases. In the first phase tolls are selected and arc tariffs
are set directly from the random keys. In the second phase, a local improvement
procedure attempts to change the tariffs with the goal of reducing the value of the
objective function. Each tolled arc a has a tariff in the interval [1, wypayx], where wmax
is an input parameter. The tariff for arc a is simply decoded as b, - [ X - Wmax |- In
an initial solution, the K tolled arcs are selected randomly by uniform distribution.
In a crossover, if both parents have a toll in arc a, the same arc is tolled in the
child. The remaining tolls are selected randomly among the arcs whose parents
have different values.

Demands are routed forward to their destinations on shortest weight paths. For
SPT, tolled links have weights equal to their tariffs and untolled links are assumed
to have weight zero. For SPFT, we add to the tariff the free flow time to define
the weight of all tolled arcs, while each untolled arc has weight equal to its free
flow time. Depending on the number of tolls and the network, there can be several
shortest paths of cost zero (especially for SPT). In this case, we use the path with
the least number of hops. Traffic at intermediate nodes is split equally among all
outgoing links on shortest paths to the destination. After the flow is defined, the
fitness of the solution is computed by evaluating the objective function ®.

The second phase of the decoder is a local improvement. Local search is applied
to the solution produced in the first phase of the decoder. In short, it works as
follows. Let ¢;s be an integer parameter and A* C A be the ¢ = min{|A4|, q;s} arcs
having the largest congestion costs ®,, i.e. |A*| = ¢ and @4« > P, for all pairs
{a*,a} such that a* € A* and a € A\ A*. For each arc a* € A*, in case it is tolled,
its weight is increased by one unit at a time, to induce a reduction of its load.
The unit-increase is repeated until either the weight reaches w4, or ® no longer
improves. If no improvement in the objective function is achieved, the weight is
reset to its initial value. In case the arc is not currently tolled, a new toll is installed



TOLLBOOTH OPTIMIZATION 11

on the arc with initial weight one, and a toll is removed from some other link tested
in circular order. If no reduction in the objective function is achieved, the solution
is reversed to its original state. Every time a reduction in ® is achieved, a new
set A* is computed and the local search restarts. The procedure stops at a local
minimum when there is no improved solution changing the weights of the candidate
arcs in set A*.

In the local improvement, every time a weight is changed (added by one unit,
inserted or removed) the current shortest paths are updated (Buriol et al., 2008)
instead of recomputed from scratch, thus saving a considerable amount of running
time.

4. COMPUTATIONAL RESULTS

In this section we present computational experiments with the models and al-
gorithms introduced in the previous sections of this paper. Initially, we describe
the dataset used in the experiments. Then, we detail three sets of experiments.
The first set evaluates the mathematical models MM1 and LMM1. The second
set of experiments evaluates the full model MM2 with piecewise linear function,
which considers the shortest-path constraints with even split of loads. The last
set of experiments evaluates the biased random-key genetic algorithm presented in
Section 3.

The experiments were done on a computer with an Intel Core i7 930 pro-
cessor running at 2.80 GHz, with 12 GB of DDR3 RAM of main memory, and
Ubuntu 10.04 Linux operating system. The biased random-key genetic algorithms
(BRKGA) were implemented in C and compiled with the gcc compiler, version
4.4.3, with optimization flag -03. The commercial solver CPLEX 12.32 was used to
solve the proposed linearizations of the mathematical linear models, while MOSEK?
was used to solve the mathematical model MM1 (with convex objective function).

Table 1 details six synthetic instances (S1) and ten real-world instances (52)
considered in our experiments and made available by Bar-Gera (2013).

To test model LMM2, we created the instances from set SI from instance
SiouxFalls of S2 by removing from SiouxFalls some of its nodes and their adja-
cent links as well as all OD pairs where these nodes are either origin or destination
nodes. Let n < |V be the new number of nodes. We choose to remove nodes

ve Viv= {k‘v“l/_ln—FlJ with k=0,...,|[V|—-n—1.

Let v,a,b € V be nodes such that a € OUT (v) and b € IN (v). Furthermore, let a,
(bt) and ay, (br) be, respectively, the tail and head nodes of links a (b). We create
a link a’ from ay, to b if there does not already exist a link between aj, and b; and
furthermore |OUT (b:)| < 4 or |IN(ap)| < 4. Link @’ has the same characteristics
(free flow time, capacity, etc.) of link a. After all extensions, we remove from the
network all arcs a € OUT(v) U IN (v) as well as node v.

4.1. Results for models MM1 and LMM1. The first set of experiments eval-
uates the models when solved with commercial solvers. Table 2 presents, for each
instance, the objective functions ®, and the lower and upper bounds ¢! and %,
respectively.

2
3

www—01.ibm.com/software/integration/optimization/cplex-optimizer
www.mosek.com
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TABLE 1. Attributes for the instances are given in each column.
For each instance, its row lists the set identification (S1 or S2),
instance name, number of vertices, links, OD pairs, number of
vertices in which traffic originates (Source nodes), and number of
nodes in which traffic terminates (Sink nodes).

Set Instance Vertices Links OD pairs Source nodes Sink nodes
SiouxFalls_08 8 16 48 8 8
SiouxFalls_09 9 26 68 9 9
SiouxFalls_10 10 36 84 10 10

S1 SiouxFalls_12 12 38 126 12 12
SiouxFalls_14 14 36 172 14 14
SiouxFalls_16 16 50 218 16 16
SiouxFalls 24 76 528 24 24
Friedrichshain Center 223 514 506 23 23
Prenzlauerberg Center 350 717 1406 38 38
Tiergarten Center 361 749 644 26 26
Mitte Center 398 857 1260 36 36

S2 Anaheim 416 914 1406 38 38
MPF Center 974 2153 9505 98 98
Barcelona 1020 2522 7922 97 108
Winnipeg 1052 2836 4345 135 138
ChicagoSketch 933 2950 9351 386 386

In the first two columns after the name of the instance, we present the objective
function values ® and the computational times for model MM1 obtained with the
nonlinear solver MOSEK 6.0 using the modeling system GAMS®. A few nonlinear
solvers are part of the GAMS system and we evaluated the performance of all of
them. Some of them are general nonlinear solvers, and have no specific routines
for convex functions. Most were not able to solve the larger instances. MOSEK
presented the best performance in terms of running times and for this reason we
report only the results obtained with MOSEK. The next columns present results
for CPLEX 12.3 with the proposed piecewise-linear functions ¢! and ¢*, respec-
tively the lower and upper estimations of function ®. In each case, we show the
objective function values in columns ¢! and ¢%, as well as ®{p'} and ®{p"}, the
values of ® considering the arc loads obtained by the different approximations. The
computational times are reported in seconds.

From the results in Table 2, three main observations can be made. First, there
are small gaps between ¢! and ®{¢'}, as well as between " and ®{p"}, i.e. both
piecewise-linear functions ¢' and ¢" have values that are, respectively, close to
®{p'} and ®{p"}. In a small number of cases the gap is significant and we observe
that, as expected, this occurs in instances with higher average or higher maximum
utilization (¢,/c,), like Barcelona and Winnipeg. Second, we compare the results
for models MM1 and LMM1. The gaps between ¢! and ®, and between ¢* and ®,
are also small, which means that the piecewise functions have similar values to the
original convex function ®. However, for most of the instances, the computational
times spent by MOSEK on the convex function are two to four orders of magnitude
greater than the time spent by CPLEX on the piecewise-linear functions. The
only case where solving the model with a piecewise linear function (computing p*
with CPLEX) took longer than solving the model with the convex function ® (using
MOSEK) was for instance ChicagoSketch. However, CPLEX found good solutions
quickly, and spent most of the time certifying optimality. For example, CPLEX

4WWW . gams.com
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found solutions with a gap of 3% with respect to the optimal solution in about 650
seconds, while MOSEK needed more than 1600 seconds to reach this gap.

The last important observation is that the MM1 model is a relaxation of MM2.
Moreover, the shortest paths and even-split constraints (Egs. 14) of model MM2 add
a considerable number of variables and constraints to the model. Thus, evaluating
MM2 with a convex function became impracticable in terms of computational time,
and for this reason no corresponding results are reported. In the next experiment
we evaluate both approximations for the full model (MM2).

4.2. Results for the tollbooth problem with piecewise-linear cost (LMMZ2).
This set of experiments tests the performance of CPLEX on MM2, the model that
includes shortest paths and even-split constraints. We run the model consider-
ing both weight functions to calculate shortest paths (SPT and SPTF) and both
piecewise-linear functions introduced in Section 2.3.

Table 3 present results for model LMM2 when the shortest path is calculated
considering only the toll tariffs (SPT), and for tariffs plus the free flow time (SPTF),
respectively. For each instance, we tested several scenarios of IC. For each scenario
we present the objective function values of approximations ¢! and ¢* obtained by
CPLEX, the corresponding ®{¢'} and ®{¢"} values (as described in the previous
subsection), the gap returned by the solver for a time limit of 1800 seconds, and
finally the running times in seconds. The null values (-) indicate that a feasible
solution was not found within the time limit.

Table 3 illustrates the difficulty in solving these instances with CPLEX. For
most of the instances no optimal solution was found within 30 minutes, and for
many of them not even a feasible solution was found in this time limit. A small
increase in the instance size implies in a large increase in the computational effort
spent to solve the model. We observe that for SPT the solver has more difficulty in
finding an initial solution, and the gap returned by the solver is slightly higher in
comparison with SPTF. Furthermore, the computational time is slightly reduced
for SPTF, and ¢! was computed slightly faster than was .

Results for instances SiouxFalls_06 and SiouxFalls_08 were found for ¢! and
©" in a less than one second, and for this reason they were omitted from the table.
On the other hand, results were omitted for SiouxFalls_16, for both piecewise-
linear functions and shortest-path evaluations SPT and SPTF, since the solver was
unable to find any feasible solution within the time limit.

In summary, Table 2 shows that solving the simplified model MM1, i.e. MM2
without the shortest paths computation and even-load constraints, takes a consid-
erable time, while their corresponding linearized versions ¢! and ¢ are calculated
very quickly for almost all cases. Table 3, on the other hand, shows that the lin-
earizations ! and ¢ of the full model MM2 takes a long time even for small
instances. Thus, these results motivated us to propose a heuristic solution to solve
the tollbooth problem, and the results of the proposed biased random-key genetic
algorithm are presented in the next subsection.
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TABLE 3. Computational results for LMM?2 to SPT and SPTF.

Approx. Obj. Function Solver gap Time(s)
Type Instance K o e 2{o'}  @{s'} o P o P
2 6.47 6.70 6.52 6.52 0.00  0.00 91.7 8.1
5 6.35 6.58 6.38 6.38 0.00  0.00 12.4 94.4
SiouxFalls 09 10 6.27 6.47 6.33 6.33 0.00  0.00 4.1 35.2
15 6.27 6.46 6.32 6.32 0.00  0.00 1.3 15.3
20 6.27 6.46 6.32 6.32 0.00  0.00 0.4 3.5
3 - - - - - - 1,800.0  1,800.0
7 - - - - - - 1,800.0  1,800.0
SiouxFalls_10 14 - - - - - - 1,800.0 1,800.0
21 6.70 6.90 6.76 6.78 0.59  0.42 1,800.0  1,800.0
E 28 6.70 6.90 6.76 6.78 0.23 0.21 1,800.0  1,800.0
n 3 - - - - - - 1,800.0  1,800.0
7 - - - - - - 1,800.0  1,800.0
SiouxFalls_12 15 - - - - - - 1,800.0 1,800.0
22 - - - - - - 1,800.0 1,800.0
30 - - - - - - 1,800.0 1,800.0
3 46.72  120.69 65.69 65.69 1.63 0.94 1,800.0 1,800.0
7 46.24  120.08 65.13 65.13 0.75  0.60 1,800.0 1,800.0
SiouxFalls_14 14 - - - - - - 1,800.0 1,800.0
21  46.14 - 64.96 - 0.49 - 1,800.0 1,800.0
28 46.14 - 64.96 - 0.39 - 1,800.0 1,800.0
2 6.28 6.47 6.33 6.33 0.00  0.00 0.5 0.3
5 6.27 6.46 6.32 6.32 0.00  0.00 0.4 0.4
SiouxFalls 09 10 6.27 6.46 6.32 6.32 0.00  0.00 0.2 573.3
15 6.27 6.46 6.32 6.32 0.00  0.00 0.4 0.4
20 6.27 6.46 6.32 6.32 0.00  0.00 0.4 0.4
3 6.73 6.93 6.79 6.79 0.00  0.00 92.7 176.4
7 6.70 6.90 6.76 6.78 0.00 0.15 203.2  1,800.0
SiouxFalls_10 14 - 6.90 - 6.78 - 0.31 1,800.0 1,800.0
21 6.70 6.90 6.76 6.78 0.32  0.51 1,800.0  1,800.0
E 28 6.70 6.90 6.76 6.78 0.04 0.51 1,800.0  1,800.0
% 3 11.19 13.09 11.67 11.82 0.00 1.87 1,748.4  1,800.0
7 11.18 13.05 11.66 11.83 0.39 2.44 1,800.0  1,800.0
SiouxFalls_12 15 - - - - - - 1,800.0 1,800.0
22 - - - - - - 1,800.0 1,800.0
30 11.18 - 11.66 - 1.64 - 1,800.0 1,800.0
3 46.24 119.73 65.09 65.09 0.00 0.00 1,019.3 133.3
7 46.14  119.65 64.96 64.99 0.48 0.25 1,800.0 1,800.0
SiouxFalls_14 14 - - - - - - 1,800.0 1,800.0
21 - - - - - - 1,800.0 1,800.0
28 - 119.65 - 64.99 - 0.13 1,800.0 1,800.0

4.3. Results for the biased random-key genetic algorithm. This section
presents results for the biased random-key genetic algorithm applied on instances
from class S2. We extended the experimental study performed by Buriol et al.
(2010) in which results for only three of these instances were presented. Moreover,
we provide an analysis of the best solution for each combination of instance, value
of K, and problem type (SPT or SPTF).

To tune the parameters, a set of experiments was performed. The experiment
consisted of two steps. In the first step, we determined the fixed running time
for each triplet: instance (SiouxFalls, Prenzlauerberg Center, and Anaheim),
value of K, and problem type (SPT or SPTF). To define the fixed time, we ran
the BRKGA with local search using a set of predefined parameters: population
size p = 50, elite set of size p. = 0.25p, mutant set of size p,, = 0.05p, elite key
inheritance probability p4 = 0.7, and a restart parameter r = 10. At every r
generations we verify whether the best three individuals in the population have
identical fitness (within 1073 of each other). If they do, then the second and third
best are replaced by two new randomly-generated solutions. The BRKGA was
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run for at least 500 and at most 2000 generations, stopping after 100 generations
without improvement of the incumbent solution. The fixed time is defined to be
the average of five independent runs.

The running time defined in the first step of the tuning phase is used in the
second step to determine the best combination of parameter values. We ran the
BRKGA for this fixed amount of time with parameters taken from the sets of values
shown in the third column of Table 4. All combinations of parameter values were
considered.

TABLE 4. Parameter values in tuning experiment.

Description Parameter Values
Population size p {50,100}
Elite size De {0.15p, 0.25p}
Mutation size Pm {0, 0.05p, 0.10p}
Inheritance probability PA {0.5, 0.7}
Restart r {0, 10}
Local Search Qs {0*, 2, 5, 10}

*Indicates that no local search is applied.

Given a set of triples, each consisting of an instance, a value of I, and a problem
type (SPT or SPTF), we run the BRKGA on each triple using all combinations
of the parameters in Table 4. The relative gaps of the fitness values from each
run to the best fitness over all runs for each triple is computed. We observe that
using a local search in the BRKGA results in better solutions than using no local
search. In the case of ¢q;; = 0, the average relative gap is 29.86, while for q;; = 2,5,
and 10, the relative gap was 6.70, 5.96, and 5.88, respectively. Therefore, we
analyze the remaining parameters considering only runs where q;; = 10. Table 5
shows the average relative gaps for these remaining parameters. The best observed
parameter values were p = 100 for population size, p. = 0.15p for elite population
size, py, = 0.05p for mutant population size, p4 = 0.70 for inheritance probability,
and r = 10 for restart.

TABLE 5. Average of relative gaps obtained for different parameters.

Description Parameter Value Gap
. . 50 6.04
Population size p 100 5.72
o 0.15p 5.82
Elite size Pe 0.25p 5.3
0 6.39

Mutation size Pm 0.05p 5.49
0.10p  5.76

. . 0.5 5.91
Inheritance probability pPA 0.7 5.85
0 6.23

Restart T 10 5.53

Once the parameters were set, we ran the BRKGA with local search (BRKGA+LS)
with a time limit of 3600 seconds (except for ChicagoSketch, the largest instance,
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for which we ran with a time limit of 7200 seconds). We allow the maximum num-
ber of generations to be 2000, and the maximum number of generations without
improvement to be 100.

Table 6 shows averages over five runs of BRKGA+LS and a comparison between
SPT and SPTF. For each value of K, it lists the best solution value (Best ®) over
the five runs, average fitness value (Avg @), standard deviation (SD), and average
running time in seconds.

TABLE 6. Detailed results of SPT and SPTF for BRKGA-+LS.

SPT SPTF

Instance I Best & Avg & SD Time (s) Best & Avg & SD Time (s)
10 52.38 54.48 2.88 34.83 25.19 25.19 0.00 27.57

20 32.14 38.01 6.08 59.52 22.72 22.86 0.10 30.26

SiouxFalls 30 27.05 28.37 1.90 68.43 22.10 22.30 0.17 32.34
50 21.59 21.90 0.27 41.81 21.64 21.83 0.18 48.74

70 21.38 21.53 0.15 32.39 21.55 21.94 0.23 17.18

10 56.44 56.80 0.34 263.53 46.38 47.23 0.68 218.38

50 46.59 48.32 2.44 526.92 43.45 43.52 0.06 226.39

Friedrichshain 100 43.52 43.93 0.37 710.33 43.41 43.50 0.07 273.65
Center 300 42.90 43.45 0.33 395.85 43.38 43.59 0.14 209.36
500 44.04 44.46 0.38 207.16 43.56 44.01 0.37 236.48

10 79.19 80.18 0.99 924.55 65.99 66.13 0.14 682.22

50 68.21 69.95 1.80 1,780.96 61.72 62.61 0.75 890.95

Prenzlauerberg 100 63.31 63.72 0.26 1,344.99 61.58 61.65 0.07 785.03
Center 450 61.82 62.18 0.26 1,015.67 61.63 61.81 0.16 735.60
700 62.42 63.26 0.81 1,066.42 63.03 63.68 0.44 703.19

10 61.97 62.00 0.07 418.51 53.24 53.28 0.06 401.85

50 56.45 56.69 0.23 1,148.33 52.88 52.92 0.03 534.28

Tiergarten 100 54.14 54.79 0.47 1,499.94 52.92 53.04 0.13 505.92
Center 450 53.11 53.26 0.13 764.01 52.87 52.93 0.06 444.03
700 53.60 53.98 0.25 578.06 52.97 53.10 0.12 331.22

10 79.78 80.11 0.26 805.12 65.84 66.47 0.38 807.10

50 69.74 70.58 0.67 1,880.73 63.86 64.03 0.21 1,096.38

Mitte Center 100 68.39 68.71 0.33 2,233.21 63.75 63.94 0.19 1,536.11
400 63.94 64.11 0.15 2,323.10 63.90 64.17 0.22 955.07

800 64.19 64.47 0.34 1,102.89 63.96 64.30 0.22 879.13

10 15.39 15.42 0.01 785.38 12.72 12.73 0.01 1,328.61

50 14.01 14.05 0.04 2,611.93 12.58 12.60 0.02 2,058.35

Anaheim 100 13.41 13.54 0.09 3,406.09 12.58 12.60 0.01 2,034.47
500 12.73 12.89 0.11 3,602.11 12.62 12.68 0.05 3,601.32

800 12.60 12.65 0.05 3,096.01 12.57 12.63 0.05 3,041.08

10 91.64 92.03 0.28 3,616.48 70.73 71.14 0.24 3,615.19

100 82.28 82.62 0.51 3,616.98 66.64 66.73  0.07 3,611.59

MPF Center 250 82.54 82.84 0.25 3,616.24 66.76 66.93 0.12 3,615.17
1000 75.08 75.89 0.90 3,612.88 67.92 68.39 0.38 3,611.87

2000 71.21 72.58 0.90 3,607.61 68.11 68.58 0.30 3,602.20

10 15.84 15.84 0.00 3,622.16 7.82 7.91 0.13 3,618.36

100 9.41 9.48 0.05 3,622.80 7.25 7.26 0.01 3,613.41

Barcelona 500 9.62 9.87 0.23 3,619.05 8.15 8.24 0.13 3,613.71
1500 9.65 10.32 0.43 3,615.32 9.20 9.40 0.13 3,612.30

2500 8.05 8.23 0.19 3,605.98 7.85 8.00 0.13 3,607.16

10 32.34 35.22 2.09 3,627.08 17.45 17.59 0.10 3,625.19

100 20.41 20.90 0.41 3,627.86 15.50 15.62 0.09 3,619.40

Winnipeg 500 26.76 31.68 4.59 3,629.67 19.45 19.69 0.17 3,617.72
1500 20.34 21.70 1.02 3,616.06 18.96 19.92 0.87 3,618.39

2800 16.67 16.72 0.06 3,607.96 16.04 16.49 0.29 3,606.33

10 100.18 100.30 0.07 7,267.29 19.24 19.44 0.12 7,254.08

100 22.14 22.58 0.41 7,257.85 16.62 16.70 0.05 7,268.57

ChicagoSketch 500 22.77 24.29 0.96 7,268.40 17.99 18.25 0.26 7,277.62
1500 76.87 154.37 62.94 7,243.13 19.27 20.46 0.77 7,246.76

2900 16.95 17.51 0.45 7,218.88 15.72 16.04 0.20 7,212.14

The first observation is that as the value of K increases, the value of ® tends to
decrease and have less variance. In fact, in most cases, the best solutions were found
for I > “21'. With small K it is easy for flow to bypass tolled arcs, which impairs
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traffic engineering. On the other hand, the search space increases considerably for
larger K values, making the problem hard to solve. Since there are (‘él) config-
urations for the location of K tolls and for each configuration each toll can have
20 different values, then the size of the solution space is o(K) = (lé|)20’c. Thus,

the solution space size is much larger for I > % than for I < L;”. Furthermore,
even though the maximum of ¢(K) is achieved for a value of K < |A], in all of the
instances, o(K') > o(K) for all K’ > K, where K’ is the largest IC value tested. For
example, for the SiouxFalls instance, for which the largest value of I tested was
70, o(K) = (26) 20%, which achieves a maximum for K = 73.

In most entries of Table 6 the standard deviation is small, showing robustness of
the algorithm. The table also shows that for small values of ', SPTF has smaller
® than SPT. This occurs because, for small values of K, SPT has many zero-cost

paths, making it difficult to influence flow distribution with tolls.

TABLE 7. Approximation of the lower bound with tolls.

Instance Lower Bound BRKGA-+LS
SiouxFalls 19.95 21.38
Friedrichshain Center 42.47 42.90
Prenzlauerberg Center 59.90 61.57
Tiergarten Center 52.57 52.87
Mitte Center 62.36 63.59
Anaheim 12.46 12.57
MPH Center 65.88 66.64
Barcelona 6.87 7.25
Winnipeg 13.67 15.50
ChicagoSketch 14.24 15.72

Table 7 presents, for each instance, the shortest average user travel time using
tolls obtained by BRKGA in comparison with the optimal distribution flow obtained
by solving linear program MM1. An optimal solution for MM1 is a lower bound
for the tollbooth problem. The results show that with tolls it is possible to obtain
a near-optimal flow distribution.

We next explore the main characteristics of the near-optimal solutions found by
BRKGA+LS. For the best solution found in the five runs, Table 8 lists the average
number of paths for each OD pair (#Path), the average number of hops among all
OD shortest paths (#Hop), the average sum, over all OD pairs, of the tariffs on
the shortest paths (#Toll), and the average number of distinct arcs used, over all
OD pairs (#UArc).

Columns #Path in Table 8 show that when K increases, a strong reduction in
the number of shortest paths is observed for SPT, while for SPTF, the reduction
is not as pronounced. Again, this occurs because of the large number of zero-cost
paths present in SPT when £ is small. Of these, traffic flows on one or more paths
of minimum hop count. On the other hand, for SPTF, the inclusion of free flow
time to the arc weight leads to paths of distinct cost, with a few of minimum cost
(in many cases a single minimum cost path).

Columns #Hop in Table 8 show the minimum hop count distance between OD
vertices. For large values of K we observe that as the number of installed tolls
increases, the hop count decreases in both SPT and SPTF. This occurs because
with a large number of tolls it is possible to do better traffic engineering. For small
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TABLE 8. Detailed results of best solution found by BRKGA+LS algorithm.
SPT SPTF

Instance K #Path #Hop #Toll #UArc #Path #Hop #Toll #UArc
0 1.97 2.51 - 4.97 1.05 2.14 - 3.24

10 1.78 2.58 0.21 4.84 1.07 2.10 0.38 3.25

SiouxFalls 30 1.32 2.48 1.12 4.00 1.13 2.25 1.09 3.46
50 1.13 2.28 1.89 3.50 1.09 2.22 1.88 3.34

70 1.10 2.34 2.96 3.45 1.06 2.20 2.71 3.30

0 1.96 9.36 - 11.94 1.52 12.24 - 12.82

10 1.91 9.99 0.21 12.21 1.63 13.63 0.31 13.04

Friedrichshain 100 1.42 11.43 1.76 12.58 1.48 12.49 2.14 12.48
Center 300 1.17 11.50 5.39 12.33 1.00 10.68 5.57 11.68
500 1.03 10.35 10.39 11.20 1.00 10.44 10.49 11.44

0 2.75 14.72 - 17.11 1.79 18.67 - 18.00

10 2.61 15.65 0.07 18.02 1.53 16.48 0.38 17.19

Prenzlauerberg 100 1.60 16.41 2.08 17.33 1.30 16.06 2.20 17.02
Center 450 1.15 15.85 8.07 16.69 1.07 15.86 7.95 16.70
700 1.12 15.00 15.14 15.97 1.01 14.57 14.69 15.62

0 1.92 15.40 - 17.32 1.12 17.43 - 18.51

10 2.07 17.20 0.00 18.57 1.07 15.76 0.42 17.23

Tiergarten 100 1.20 16.37 1.01 18.08 1.04 15.98 2.35 17.26
Center 450 1.03 15.74 8.14 16.98 1.00 16.11 8.95 17.11
700 1.00 15.81 13.74 16.83 1.00 15.97 15.20 16.97

0 2.79 14.95 - 17.75 1.33 17.49 - 17.81

10 3.12 16.81 0.00 18.99 1.38 17.37 0.48 17.60

Mitte 100 1.34 15.83 0.45 17.61 1.14 16.13 2.53 16.84
Center 400 1.05 15.84 6.65 16.77 1.00 15.29 6.58 16.29
800 1.02 15.12 13.21 16.11 1.02 15.48 14.21 16.32

0 8.71 15.64 - 21.45 1.35 15.67 - 17.46

10 16.79 19.71 0.00 23.19 1.35 15.16 0.07 16.96

Anaheim 100 3.29 18.31 0.02 20.61 1.39 15.52 0.74 16.51
500 1.05 14.78 6.48 15.89 1.04 14.31 6.43 15.45

800 1.01 14.32 11.85 15.41 1.00 14.50 12.20 15.50

0 5.09 24.35 - 27.54 2.28 31.51 - 29.17

10 5.25 26.00 0.00 27.95 2.15 30.50 0.23 28.48

MPF Center 250 3.54 27.98 0.54 29.08 1.34 27.47 2.29 27.37
1000 1.10 24.98 8.63 25.87 1.21 26.63 9.40 26.33

2000 1.09 23.79 20.41 24.21 1.00 24.00 20.90 25.00

0 7.37 15.85 - 20.82 1.16 18.73 - 20.73

10 7.00 18.28 0.01 24.80 1.13 18.70 0.07 20.85

Barcelona 500 5.02 21.25 0.14 25.03 1.14 19.01 0.69 20.58
1500 1.38 19.51 8.36 20.35 1.03 18.37 7.21 19.35

2500 1.08 15.87 16.45 16.77 1.01 16.12 16.69 17.10

0 3.92 20.72 - 25.96 1.04 24.98 - 25.73

10 4.22 21.96 0.00 27.15 1.05 24.80 0.15 25.36

Winnipeg 500 3.02 31.04 0.82 32.02 1.17 25.69 2.32 26.11
1500 1.65 31.76 9.83 25.91 1.11 24.78 9.82 24.84

2800 1.04 19.77 20.12 20.82 1.01 20.15 20.60 21.14

0 20.04 14.86 - 23.69 1.01 12.30 - 13.32

10 21.24 15.23 0.00 24.35 1.01 12.19 0.09 13.20

ChicagoSketch 500 9.88 15.72 0.49 22.49 1.00 12.33 0.95 13.35
1500 2.64 19.38 4.82 17.57 1.00 12.52 4.97 13.53

2900 1.16 12.23 12.91 13.22 1.00 11.54 12.23 12.55

values of K in SPT, the hop count is small because it corresponds to a minimum

hop-count path among the zero-cost shortest paths.

The columns #Toll in Table 8 show the average number of tolls that a user
traverses on an OD shortest path. Clearly, this value increases with /C. Since an
increase in K leads to a decrease in the number of shortest paths (column #Path),
the number of distinct arcs (column #UArc) consequently decreases.
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5. CONCLUSIONS

In this paper we presented an extensive study of the tollbooth problem. Two
mathematical formulations for different versions of the tollbooth problem were pre-
sented, as well as linearizations that give lower and upper bounds for their objective
functions. Computational tests were conducted taking into account the original and
the linearized models, applied on two sets of synthetic and real-world instances.
Moreover, a random-key genetic algorithm was run for this same set of instances.

When analyzing the results for the mathematical models, we concluded that the
model MM2, which includes shortest paths and even-split constraints, has a large
number of variables and constraints, making it difficult to be solved with general-
purpose solvers, even when we limit ourselves to small instances. On the other
hand, if shortest paths and even-split constraints are removed from the model,
giving rise to a simplified version of the problem, the linearized versions of the
problem can be solved efficiently with CPLEX. However, results obtained with the
biased random-key genetic algorithm for the complete model shows it has a good
tradeoff between computation time and solution quality on this problem.

Finally, considering that users naturally take the least costly path, toll setting
can be used to better distribute the flow in the network and consequently reduce
traffic congestion.
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