
A BIASED RANDOM-KEY GENETIC ALGORITHM FOR

WIRELESS BACKHAUL NETWORK DESIGN

C.E. ANDRADE, M,G.C. RESENDE, W. ZHANG, R.K. SINHA, K.C. REICHMANN,
R.D. DOVERSPIKE, AND F.K. MIYAZAWA

Abstract. This paper describes a biased random-key genetic algorithm for a
real-world wireless backhaul network design problem. This is a novel problem,

closely related to variants of the Steiner tree problem and the facility location

problem. Given a parameter h, we want to build a forest where each tree has at
most h hops from the demand nodes, where traffic originates, to the root nodes

where each tree is rooted. Candidate Steiner nodes do not have any demand

but represent locations where we can install cellsites to cover the traffic and
equipment to backhaul the traffic to the cellular core network. Each Steiner

node can cover demand nodes within a given distance, subject to a capacity

constraint. The aggregate set of constraints may make it impossible to cover
or backhaul all demands. A revenue function computes the revenue associated

with the total amount of traffic covered and backhauled to the root nodes.
The objective of the problem is to build a forest that maximizes the difference

between the total revenue and the cost associated with the installed equipment.

Although we will have a forest when we consider only the backhaul links and
root nodes, the addition of demand vertices can induce undirected cycles,

resulting in a directed acyclic graph. We consider instances of this problem

with several additional constraints that are motivated by the requirements of
real-world telecommunication networks.

1. Introduction

There has been a surge in the popularity of mobile devices (smart-phones and
tablets). For example, in the United States, mobile devices now account for more
than 50% of Internet usage (O’Toole, February 28, 2014). This, coupled with the
popularity of high bandwidth services such as video, has pushed mobile data usage.
Cisco VNI Global IP Traffic Forecast (Cisco, 2014) predicts a 61% annual growth
rate for mobile data, resulting in an 11-fold increase from 2013 to 2018. Service
providers need to keep up with this growth in mobile data usage by providing better
coverage and higher rates to their customers.

The associated network design problem needs to decide on the optimal concen-
tration of cellular and Wi-Fi equipment to provide good service to users. We also
need to find the right backhaul strategy to route this traffic to the core network. A
naive solution may be to run fiber to all sites, but it may be prohibitively expensive.
Instead, we judiciously use the existing fiber infra-structure to pick the right back-
haul. First of all, for installing Wi-Fi or cellular equipment, we may prefer a site
that already has fiber. For other sites, we may be able to use a wireless backhaul to

Date: November 4, 2014.
Key words and phrases. Wireless backhaul network design, small cells, genetic algorithm,

mixed integer programming model.
AT&T Labs Research Technical Report.

1

2 C.E. ANDRADE ET AL.

aggregate their traffic to a fibered site. Finally there are sites where running new
fiber may be the best option.

In this paper, we propose the Wireless Backhaul Network Design Problem (WB-
NDP) with practical constraints, and present a model to deal with real networks.
The motivation of the proposed problem is to model wireless backhaul networks
that operate over technologies such as Wi-Fi, LTE (4G technology), and HSPA+
(3G technology). In such networks, we must collect data traffic in a given geo-
graphic region and route it to the core network. Their structure is determined by
equipment and service quality constraints. Usually, one wants to build a tree span-
ning high-capacity nodes over a sparse graph with capacity constraints. Although
the WBNDP resembles variants of the Steiner tree and facility location problems,
its revenue and cost structures distinguish it from these two problems.

To solve the WBNDP, we propose a biased random-key genetic algorithm (BRK-
GA) with a sophisticated decoding procedure. The algorithm has several phases,
such as equipment deployment, construction of routing trees, flow computation, and
pruning of unused equipment. The choice of BRKGA is grounded on its recent suc-
cess in solving large combinatorial optimization problems (Gonçalves and Resende,
2011a). In order to evaluate the quality of results obtained by the BRKGA, we also
formulate and solve a mixed integer linear programming model for computing the
optimal solution.

The structure of the paper is as follows. Section 2 presents the WBNDP in detail
and Section 3 reviews the related literature. In Section 4, a formal definition as well
as a mixed integer linear programming model are presented. Section 5 describes a
biased random-key genetic algorithm to solve the WBNDP and Section 6 discusses
the maximum flow problem that arises in WBNDP. Section 7 describes some in-
stances derived from real-world problems and pre- and post-processing phases. Sec-
tion 8 presents experimental results. Concluding remarks are made in Section 9.

2. Problem description

Consider a geographical region with each point in the region identified by its
coordinates (latitude and longitude). Consider the graph G = (V,A), where V and
A are, respectively, the sets of vertices and arcs of G. The set V d ⊆ V is the subset
of vertices that correspond to demand points or city blocks in this region. These
demand points consist of mobile devices, such as mobile phones, tablets, laptops,
and other devices that make use of wireless communication. The set V s ⊆ V is the
set of vertices that correspond to equipment used to collect and route traffic from
the demand points. This equipment is installed on utility poles distributed across
the streets and highways of the region. We consider small cells network design,
meaning that cellsites have relatively small coverage radii. Small cells have the
advantage of using spectrum more efficiently. We consider three types of equip-
ment: Wi-Fi and LTE for access traffic (demand collection), and retransmitter for
routing/backhauling. The set V r ⊆ V represents the Fibered Access Points (FAPs)
where we have existing fiber connected to the core network. VRADs (Video-Ready
Access Devices) are one example of FAPs. Installing equipment close to a VRAD
will enable us to route the traffic on this fiber with no or little additional cost. We
also have many existing macro cellsites where we can add additional radio equip-
ment (eNB) to carry traffic. If this macro has a fiber backhaul, we can technically
consider it a FAP but because macros also cover traffic, we make a distinction

BRKGA FOR WIRELESS BACKHAUL NETWORK DESIGN 3

between macro cells and other FAPs for notational convenience. Finally certain
macro cellsites are connected to the core with very high speed wireless links. In our
formulation, they serve the same purpose as macros with a fiber backhaul and we
treat them identically.

The objective is to create routing trees such that the tradeoff between the rev-
enue derived from the routed traffic and the network cost be the best possible.
In these networks, there are a large number of peculiarities that differ them from
Steiner trees. We call this problem the Wireless Backhaul Network Design Problem
(WBNDP) and in the following we describe each one of these particularities so
that later on we can present a formal definition.

2.1. Demand splitting and routing trees. In general, it is difficult to estimate
the demand of each user due to the user’s mobility in the region where the network
will be built. One way to approximately model this scenario is to concentrate, for
each city block, its total demand at the center of the block. Although this appears
to be oversimplified, the errors are diluted by the mobility of the users. Therefore,
it is reasonable to assume that a certain block may be served by several cellsites and
its demand split among them. Although the demand may be split among several
pieces of access equipment, this equipment and the routing equipment must be
connected through trees rooted at the FAPs or the macrocells.

Thus, one can note that a solution S for a backhaul network may contain an
undirected cycle originated at a demand. Therefore, although we have a forest
when we consider only the Steiner vertices and root nodes of S, the addition of
demand vertices can induce these undirected cycles, resulting in a directed acyclic
graph (DAG).

2.2. Capacity of access equipment. Each access equipment is limited in its
handling of traffic. These constraints are access radii and access capacity. Value
of these parameters vary across vendors and also depend on geographic terrain.
We have used the following representative values in our simulations. For access
radius, we have Wi-Fi: 100 meters; LTE small cell: 400 meters; LTE macro cell
and HSPA: 3,000 meters. For access capacity, we have Wi-Fi: 100 Mbps; LTE
small cell: 20 Mbps single band, 40 Mbps dual band; LTE macro cell and HSPA:
25 Mbps. Although, for the sake of simplification, we considered LTE macro cell
and HSPA to have the same access radius and capacity, even though these two
technologies can present different values. For more details about these limitations,
see Rayal (June 27, 2011).

2.3. Capacity of retransmitter equipment. The capacity of retransmitter equip-
ment is one of the most complex aspects of this type of network. In addition to
having a maximum access radius (representative value of 1,000 meters), retransmit-
ter equipment also have a physical restriction that limits the sum of the flow that it
receives and sends to the other retransmitters. This quantity is limited to a value
Ubh (e.g., 100 Mbps). Though this equipment also deals with access traffic from
other equipment (Wi-Fi/LTE) that share the same utility pole, this limit is not
applied to that traffic. Therefore, the limit Ubh does not account for all incoming
traffic but shapes the outgoing traffic.

More precisely, let v ∈ V s be a retransmitter. Take A+s
v = {(w, v) ∈ A : w ∈ V s}

as the set of arcs outgoing from neighbors of v that send to it backhaul traffic. Let
a−v be the outgoing arc of v (recall that we are looking for a backhaul forest). Let

4 C.E. ANDRADE ET AL.

A+d
v = {(w, v) ∈ A : w ∈ V d} be the set of arcs from demand vertices to v. Let

f : A→ R+ be a function that defines the flow on the arcs. Therefore, we have

(1)
∑
e∈A+s

v

fe + fa−v ≤ Ubh , ∀v ∈ V s

such that

(2)
∑
e∈A+s

v

fe +
∑
e∈A+d

v

fe = fa−v , ∀v ∈ V s.

While Inequality (1) only restricts the backhaul flow to at most the capacity
Ubh , Equality (2) is the classical flow conservation equation which ensures that v
has no excess flow. Although these restrictions do not influence the structure of
the backhaul forest, they have a direct impact on the maximum flow in the forest,
used to compute the revenue. In this case, we cannot use a classical algorithm for
maximum flow such as Edmonds-Karp or Goldberg-Tarjan directly (see Goldberg
and Tarjan (1988) for a comprehensive list).

Another physical restriction on the retransmitters is that they support only a
limited number of neighbors sending backhaul traffic to it (known as fan-in, equal
to 5 in our simulation results). Thus, this restriction limits the incoming degree of
each retransmitter vertex.

2.4. Sight and minimum distance. One can note that the subgraph induced by
V s may be sparse. The main reason for this is the existence of physical barriers, such
as buildings and hills between pairs of utility poles. Moreover, the distance between
them can be so large that the signal loses strength and impairs communication.
Therefore, one must consider that the links (u, v) and (v, u) only exists when poles u
and v are close enough (1, 000 meters in our simulations) and they are in each other’s
lines of sight, i.e. we can trace a straight line between them without obstruction.

Another important aspect is the interference among cellsites. Both LTE and
HSPA use licensed spectrum and can interfere with each other. Therefore, a pair
of LTE equipment cannot be installed too close together. In our simulations, we
restrict a minimum distance of 300 meters between two LTE small cellsites and
a minimum distance of 500 meters between LTE small cell and macro cellsites.
Note that this concern does not exist with Wi-Fi equipment which, although can
exhibit interference, occupies a non-licensed spectrum. Such spectrum is very hard
to control due to external interferences.

2.5. Number of hops. The first hops are defined to be arcs that link root nodes
to poles. In practice, these hops may be built using either wireless links or fiber
links. The links between utility poles and FAPs must use fiber. Links between poles
and macrocells may use fiber or be wireless. The other hops are built over wireless
links. The restriction is that the number of wireless hops must be limited to an
upper bound (in practice, two or three hops). This restriction aims to reduce the
latency of the wireless network and is commonly considered in network planning
(Dahl et al. (2006)). Note that only backhaul links are considered.

Example. Figure 1a depicts an example of a base graph where the dashed arcs
represent possible wireless links and the solid blue arc represents an optical fiber
link. The dotted sinuous arcs represent the possible links between a demand block
and an access equipment. This graph is based on geographic information of the

BRKGA FOR WIRELESS BACKHAUL NETWORK DESIGN 5

backhaul region and takes into consideration maximum coverage radii as well as
the lines of sight of pairs of equipment. Note that the macrocell (represented by
a yellow hexagon) contains two attached vertices. These are the backhaul traffic
aggregator (BTA) and the macro cell traffic aggregator (MTA) (represented by
yellow diamonds). Note that these vertices are virtual and the links between them
are internal to the devices. They are used to better model the traffic (more detail
is given in Section 4). As with the macrocells, each utility pole is represented by
a red square and has attached to it two virtual vertices representing Wi-Fi and
LTE equipment and their respective aggregators (orange diamonds for WTAs and
purple diamonds for LTAs). The demands are represented by light blue circles.
Note that each demand may be satisfied in three distinct ways: Wi-Fi, LTE, and
HSPA. In this example, only demands 0 and 2 can be served by the macro cell
because of their proximity to the macrocell. Demand 2 can split its traffic between
the macrocell and utility poles UP0 and UP1 using LTE. The same situation occurs
with demand 3. Demand 1 can use Wi-Fi or LTE on pole UP2, and LTE on pole
UP0. Demand 4 is only close to pole UP4 and can use both Wi-fi and LTE. Note
that utility poles UP0, UP1, and UP2 are close enough to each other and in each
other’s lines of sight, enabling the installation of retransmitters on them. Utility
poles UP3 and UP4 are in another region and do not have communication links
with UP0, UP1, or UP2.

Figure 1b shows a valid solution. The solid arcs represent the links among the
pieces of equipment. In this example we ignore capacities. Note that several pieces
of equipment are not installed since they do not serve any demand. For example, in
utility pole UP2 it suffices to install Wi-Fi. Note that if we consider only the black
and blue arcs (straight lines), we have a forest. Note also that demand 2 splits its
traffic between utility pole UP0 using LTE and the macrocell. Demand 3 is more
interesting: it is split between two distinct subtrees. In this case, demand 3 uses
LTE on UP3 and UP1 but nothing prevents it from using the Wi-Fi on UP1 or LTE
on UP3.

3. Related literature

The wireless backhaul network design problem (WBNDP) is closely related to
variants of the Steiner tree and the facility location problems. Steiner tree problems
have been widely studied and among their many applications, network design may
be the most expressive. Given a graph with a set of terminal nodes, a set of
intermediate nodes called Steiner nodes, and edge costs, the Steiner Tree Problem
(STP) consists in creating a minimum cost tree connecting all terminal nodes. The
general version is NP-hard (Garey and Johnson (1979)) and a survey of the STP
is presented in Voß (2006).

A variant with many applications in industry is the Prize-Collecting Steiner
Tree Problem (PCSP). In this problem, each vertex has a penalty value and each
edge has a cost. The objective is to build a tree minimizing the sum of the costs
of used edges plus the sum of the penalties of the vertices not spanned by the
tree. This is a well-studied problem originated in Goemans and Williamson (1995;
1996). Goemans and Williamson (1996) presented a 2-approximation algorithm
for the PCSP for which practical results were discussed in Johnson et al. (1999)
and Canuto et al. (2001). Lucena and Resende (2004) presented lower bounds
using linear programming and cutting planes and their results were improved by

6 C.E. ANDRADE ET AL.

Ljubić et al. (2006). Klau et al. (2004) proposed a hybrid heuristic where the
final population from a memetic algorithm is used to build reduced instances to be
solved by an exact algorithm. In da Cunha et al. (2009) a Lagrangian non-delayed

Macro VRAD

0

1

2

3

4

UP1

UP3

UP4UP0

UP2

WTA0

WTA2 WTA3

WTA4LTA0

LTA2 LTA3

LTA4

WTA1 LTA1

MTA0 BTA0

(a) Base graph.

Macro VRAD

0

1

2

3

4

UP1

UP3

UP4UP0

UP2

WTA2

WTA4LTA0

LTA3

LTA1

MTA0 BTA0

(b) Valid solution.

Figure 1. The figures above represent a base graph from where
a valid solution is extracted. We omitted equipment capacities for
legibility.

BRKGA FOR WIRELESS BACKHAUL NETWORK DESIGN 7

relax-and-cut algorithm is proposed to generate primal and dual bounds for the
problem.

The first problem to deal with limited number of hops was proposed by Gouveia
(1995) and is called Hop-Constrained Minimum Spanning Tree Problem (HMSTP).
In this problem, we want to obtain a minimum spanning tree such that the path
between the root node and a leaf node has no more than H hops (edges). In Gouveia
(1995), a formulation based on subcycle elimination inequalities was presented as
well as several lifting procedures and bounds based on Lagrangian relaxation. This
approach was refined in several papers described in Dahl et al. (2006). Recently,
Gouveia et al. (2011a) presented several local search neighborhoods resulting in
good solutions. In Gouveia et al. (2011b), HMSTP was presented as a directed
Steiner tree model over layered graphs. Several cutting planes from other Steiner
problems were applied. A branch-and-cut algorithm was also proposed and it was
able to obtain the best results so far described in the literature. Furthermore,
Gouveia et al. (2011b) reduced the Diameter-Constrained Minimum Spanning Tree
Problem (DMSTP) to a Steiner tree problem using the same technique. In the
DMSTP, the hop constraint is applied to a path between any pair of vertices in
the tree.

Another related problem is the Steiner Tree Problem with Revenues, Budget and
Hop Constraints (STPRBH). In this problem, the objective is to build a tree that
maximizes the collected profit respecting an upper bound on network costs and
maximum number of hops from the root node to other any node in the network.
Differing from the HMSTP, in the STPRBH it is not mandatory to include all
vertices and one has a limited budget to spend building the network. This problem
was proposed by Costa et al. (2008) in which a two-phase greedy algorithm was de-
veloped: one phase consists in a simple local search that destroys part of a solution
and rebuilds it greedily, and a tabu search using two simple search neighborhoods.
Later, Costa et al. (2009) presented several integer linear programming models for
the STPRBH and branch-and-cut algorithms were developed for each formulation.
Layeb et al. (2013) presented a compact formulation based on Miller-Tucker-Zemlim
constraints which resulted in similar solutions to those found previously in the lit-
erature. Recently, Fu and Hao (2014) proposed a new heuristic for the STPRBH
which was able to find optimum solutions for instance with known optima and
improved solutions for instances with unknown optima.

A similar problem is the Connected Facility Location Problem (ConFL) intro-
duced in Karger and Minkoff (2000). This problem consists in assigning each client
to exactly one opened facility and connecting the opened facilities using a Steiner
tree. Ljubić and Gollowitzer (2013) introduced a modification in the ConFL by
limiting the number of hops between the facilities and a root node. This problem is
known as the Hop Constrained Connected Facility Location Problem (HCConFL).
Ljubić and Gollowitzer (2013) used the same technique presented in Gouveia et al.
(2011b) where the problem is modeled on a layered graph. Branch-and-cut algo-
rithms were developed.

One can note that the problem addressed in this paper (WBNDP) has charac-
teristics that are similar to those of the problems reviewed above. This is especially
true with respect to the maximum number of hops. However, there are two main
characteristics that distinguish the WBNDP from other problems. The first is the
possibility that each demand node be served by more than one Steiner node or root

8 C.E. ANDRADE ET AL.

node. In this sense, we do not have a tree like in the other problems. The second
and most important characteristic is how the revenue is computed. In previous
papers, the revenue considers the “full value” of a vertex if it is in the solution, i.e.,
the backhaul network is capable of routing all the traffic. In the WBNDP, due to
natural constraints, this is not always true. In fact, we consider that the network
has a limited routing capacity and the revenue is a function of the maximum flow
in this network. This way, there is a strict relation between the network structure
and the revenue, once both topology and link capacity directly influence the flow.
Another small difference is that the degree constraints are applied only to Steiner
nodes and macrocells (only to wireless links and not to fiber links).

4. Formal Definition

Let V d be the set of demand points or demand nodes. Let V s be the set of
utility poles where the access and retransmission equipment can be installed. We
refer to V s as Steiner nodes. Let V r be the set of points which have fiber or a
high capacity link which we call root nodes. Consider V m ⊆ V r as the set of
macrocells and V v ⊆ V r as the set of FAPs. Let V = V d ∪ V s ∪ V r and note that
V m ∪ V v = V r, and the sets V d, V s, V m, and V v are pairwise disjoint. Consider
V ld ⊆ V r to be the set of FAPs whose through traffic is leased.

To model the traffic in the different technologies, consider the following sets:

• WTA: set of vertices that represents units of Wi-Fi equipment to be in-
stalled on the poles. We call each w ∈ WTA a Wi-Fi Traffic Aggregator.
There is a one-to-one correspondence between Wi-Fi traffic aggregators and
utility poles;
• LTA: set of LTE Traffic Aggregators whose description is similar to WTA,

except that they are for LTE equipment;
• MTA: set of Macrocell Traffic Aggregators which have a one-to-one corre-

spondence with each macrocell;
• BTA: set of Backhaul Traffic Aggregators which also have a one-to-one

correspondence with each macrocell. The BTAs are restricted to wireless
backhaul traffic.

Let v ∈ V s, u ∈WTA. If u is assigned to pole v, then wta(v) = u and wta(u) =
v. Consider the same for LTA, MTA, and BTA. As in previous sections, consider
a directed graph G = (W,E) such that W = V ∪WTA ∪ LTA ∪MTA ∪ BTA. We
will define the set of arcs E later. Let d : V d → R+ be the function that maps the
maximum traffic (in Mbps) that originates at each demand point.

Consider the following constants:

• Maximum number of wireless hops: H;
• Access Radii (in meters):

– Wi-Fi access radius: Rwifi ;
– LTE access radius: Rlte ;
– Macrocell access radius: Rmc ;
– Retransmitter radius: Rbh ;

• Minimum distance (in meters):
– LTE to LTE (pole to pole): δlte ;
– LTE (pole) to macrocell: δmacro ;

• Capacities (in Mbps):
– Wi-Fi: Uwifi ;

BRKGA FOR WIRELESS BACKHAUL NETWORK DESIGN 9

– LTE: Ulte ;
– Macrocell (HSPA and LTE access): Umc ;
– Retransmitter: Ubh ;

• Revenue factor (in some monetary unit): %;
• Cost (in some monetary unit):

– Equipment deployment on a pole: Cp;
– Wi-Fi equipment: Cwifi ;
– LTE equipment: Clte ;
– Retransmitter with one-element antenna (fan-in = 1): Cfan1 ;
– Retransmitter with two-or-more-element antenna (fan-in ≥ 2): Cfan2 ;
– Maintenance of equipment on a pole (per year): Cman . The mainte-

nance cost is the sum of the pole leasing costs and small cell mainte-
nance costs, per year. Note that, if the pole has no access equipment
but has a retransmitter, the maintenance cost shall be paid;

– Macrocell annual cost: Cmc . This costs is compounded by the annual
site leasing cost and the annual maintenance cost;

– Meter of deployed fiber: Cfiber ;
– Leased traffic (in $/Mbps): Cld ;

• Maximum number of incoming backhaul neighbors: δ+
bh ;

• Length of fibered link: `uv for arc (u, v);
• Maximum length of fibered links: Rfiber . Theoretically, this limit does not

exist since we may spread fiber over the entire network. In practice, the
cost to do this is very high and therefore we impose this limit. However,
this is a weak restriction which may be violated if necessary.

Let dist : V × V → R+ be the (geodesic) distance between two points. For
v ∈ V s ∪ V m, consider LOSv = {w ∈ V s ∪ V m : dist(v, w) ≤ Rbh and there is
direct line of sight between v and w}. The set of arcs E is defined as the union of
the following sets:

• Adm = {(u, v) : u ∈ V d, v ∈ MTA and dist(u,mta(v)) ≤ Rmc}: Set of
arcs from demand blocks to macrocells (MTAs) whose blocks are inside the
radius of action of a macrocell;

• Adw = {(u, v) : u ∈ V d, v ∈WTA and dist(u,wta(v)) ≤ Rwifi}: Set of arcs
from demand blocks to utility poles (WTAs) inside the radius of action of
Wi-Fi equipment;

• Adl = {(u, v) : u ∈ V d, v ∈ LTA and dist(u, lta(v)) ≤ Rlte}: Set of arcs
from demand blocks to utility poles (LTAs) inside the radius of action of
LTE equipment;

• Ass = {(u, v) : u, v ∈ V s and v ∈ LOSu}: Set of arcs between utility poles.
Note that both (u, v) and (v, u) belongs to Ass ;

• Asmw = {(u, v) : u ∈ V s, v ∈ BTA and u ∈ LOS bta(v)}: Set of arcs from
utility poles to macrocells (BTAs). This set is restricted to wireless links;

• Asmf = {(u, v) : u ∈ V s, v ∈ V m and dist(u, v) ≤ Rfiber + ε}: Set of arcs
from utility poles to macrocells using fibered links (recall that this is a weak
restriction which can be relaxed by adjusting the value of ε);

• Asv = {(u, v) : u ∈ V s, v ∈ V v and dist(u, v) ≤ Rfiber + ε}: Set of arcs from
utility poles to FAPs (same as before);

• Awta = {(wta(v), v) : v ∈ V s}: Set of arcs from WTAs to utility poles;
• Alta = {(lta(v), v) : v ∈ V s}: Set of arcs from LTAs to utility poles;

10 C.E. ANDRADE ET AL.

• Amta = {(mta(v), v) : v ∈ V m}: Set of arcs from MTAs to macrocells;
• Abta = {(bta(v), v) : v ∈ V m}: Set of arcs from BTAs to macrocells.

Note that arc sets Adm , Adw , Adl , Ass , and Asmw correspond to wireless links.
Arc sets Asv and Asmf correspond to fibered links. Arc sets Awta , Alta , Amta , and
Abta represent connections between several pieces of equipment in the same small
cell or macrocell. We use these arcs to model equipment capacities.

4.1. Mixed integer linear programming model. To better describe the objec-
tive function and constraints of the WBNDP, we next model it as a mixed integer
linear program (MIP). The constraints are based on the observations of Section 2
and on topological restrictions of a DAG, as well as maximum capacity and flow
conservation limitations. Consider the following decision variables:

• xpuv ∈ {0, 1} for (u, v) ∈ A, u ∈ V s, v ∈ V s ∪ V r ∪MTA: xpuv = 1 indicates
that arc (u, v) is in level p of some tree, for p = 0, . . . ,H; xpuv = 0, otherwise.
For v ∈ V r, only variables x0

uv are defined. For v ∈ BTA, only variables
x1
uv are defined;

• yv ∈ {0, 1} for v ∈ V s: yv = 1 indicates that a vertex/pole v is in the
solution; yv = 0, otherwise;

• fuv ∈ R+ for (u, v) ∈ A: is the flow through arc (u, v);
• tv ∈ {0, 1} for u ∈ V s: tv = 1 indicates that pole v has installed Wi-Fi

equipment; tv = 0, otherwise;
• zv ∈ {0, 1} for u ∈ V s: zv = 1 indicates that pole v has installed LTE

equipment; zv = 0, otherwise;
• a1

v ∈ {0, 1} for v ∈ V s ∪ BTA: a1
v = 1 indicates that the pole or the

macrocell has a retransmitter with a one-element antenna (fan-in = 1);
a1
v = 0, otherwise;

• a2
v ∈ {0, 1} for v ∈ V s ∪ BTA: a2

v = 1 indicates that the pole or the
macrocell has a retransmitter with a two-or-more-element antenna (fan-
in ≥ 2); a2

v = 0, otherwise.

Variables x are used to model the backhaul trees in levels. If an arc (u, v) is in
level 0 (i.e., x0

uv = 1), then the arc is a fibered link of high capacity. If the same arc
is in level 1 (i.e., x1

uv = 1), then it is a wireless link. Note that the variables x may
be not defined for all arcs (u, v) and all levels p while some arcs only appear in deep
levels of some tree. For instance, arc (UP1, UP2) from the example of Figure 1a
can only appear in level 3. Such cases can be identified in a preprocessing phase,
as we will describe in Section 7.2.

The following MIP models the WBNDP:

max %
∑

(u,v):v∈V r

fuv (3a)

−
∑
v∈V s

(Cp + Y Cman)yv (3b)

−
∑
v∈V s

Cwifi tv −
∑
v∈V s

Cltezv (3c)

−
∑

v∈V s∪Vm

(Cfan1a
1
v + (Cfan2 − Cfan1)a2

v) (3d)

−
∑

(u,v)∈Asv∪Asmf

Cfiber `uvx
0
uv (3e)

BRKGA FOR WIRELESS BACKHAUL NETWORK DESIGN 11

−
∑

(u,v)∈A:v∈V ld

Cldfuv + Cmc (3f)

s.t.

H∑
p=0

xpuv ≤ 1 ∀(u, v) ∈ A : u ∈ V s (3g)

xp+1
uv ≤

∑
(v,w)∈A:w 6=u

xpvw
∀(u, v) ∈ A : u ∈ V s,
p = 0, . . . ,H − 1

(3h)

∑
(u,v)∈A

K∑
p=1

xpuv ≤ δ+
bhyv ∀v ∈ V s ∪ BTA (3i)

∑
(v,w)∈A

H∑
p=0

xpvw ≤ yv ∀v ∈ V s (3j)

a1
v ≥

1

δ+
bh

 ∑
(u,v)∈A

K∑
p=1

xpuv

 ∀v ∈ V s ∪ BTA (3k)

a2
v ≥

1

δ+
bh

 ∑
(u,v)∈A

K∑
p=1

xpuv − 1

 ∀v ∈ V s ∪ BTA (3l)

a1
v ≥

∑
(v,w)∈A

K∑
p=1

xpvw ∀v ∈ V s (3m)

tv ≤ yv ∀v ∈ V s (3n)

zv ≤ yv ∀v ∈ V s (3o)

zu + zv ≤ 1
∀u, v ∈ V s :
dist(u, v) ≤ δlte

(3p)

zu = 0
∀u ∈ V s, v ∈ V m :
dist(u, v) ≤ δmacro

(3q)∑
(v,w)∈A

fvw ≤ dv ∀v ∈ V d (3r)

fuv ≤ Uwifi tv
∀(u, v) ∈ A :
u ∈WTA

(3s)

fuv ≤ Ulte zv
∀(u, v) ∈ A :
u ∈ LTA

(3t)

fuv ≤
K∑
p=1

Ubhx
p
uv

∀(u, v) ∈ A :
u, v ∈ V s ∪ BTA

(3u)

fuv ≤Mx0
uv

∀(u, v) ∈ A :
u ∈ V s, v ∈ V r (3v)∑

(u,v)∈A:u∈V s

fuv +
∑

(v,w)∈A

fvw ≤ Ubh ∀v ∈ V s (3w)

∑
(u,v)∈A

fuv −
∑

(v,w)∈A

fvw = 0 ∀v ∈ V \ (V r ∪ V d) (3x)

fvw ≤ Ubh ∀v ∈ BTA (3y)

12 C.E. ANDRADE ET AL.

fvw ≤ Umc ∀v ∈ MTA (3z)

Terms (3a–3f) constitute the objective function and computes the net profit that
the network generates in a time windows of Y ∈ R+ years. In practice, the revenue
is computed by a complex function based on service packages offered to customers
and, in general, is an estimate based on the experience of operators and on market
fluctuations. For the particular scenario considered in this paper, the revenue is a
function of the total traffic routed through the FAPs. We consider a linear function
using the revenue factor % as shown by Term (3a). The remaining terms add up to
the total cost: Term (3b) is the cost of deployment and maintenance of poles over
Y years; Term (3c) is the cost of Wi-Fi and LTE equipment; Term (3d) is the cost
of retransmitters; Term (3e) is the cost of trenching for fiber; and Term (3f) is the
cost of leased traffic. The constant Cmc represents the macrocell cost as described
in the beginning of this section.

The constraints can be partitioned into three blocks.
The first block (3g–3j) models the backhaul trees: Constraint (3g) forbids an arc

to be in more than one level; Constraint (3h) requires that if an incoming arc into
node v is in level p + 1, v should have an outgoing arc in level p; Constraint (3i)
limits the incoming degree for poles and BTAs according to Section 2.3 (note that
the constraint only consider levels greater than or equal to one, since fibered arcs
of level 0 are only allowed to be incoming arcs at FAPs and macrocells); and
Constraint (3j) guarantees that each pole has only an outgoing arc.

The second block of constraints (3k–3p) is tied to equipment deployment. Con-
straints (3k) and (3l) indicate, respectively, the presence of a retransmitter with a
one-element antenna or a multiple-element antenna. Note that if, for some node
v, a2

v = 1, then necessarily a1
v = 1. In this case, we do not consider a one-element

antenna subtracting its cost from the objective function as shown in Term (3d).
Constraint (3m) guarantees placement of a retransmitter in node v if there exists
an arc outgoing from v. Constraints (3n) and (3o) permit the deployment of Wi-Fi
and LTE equipment on pole v, respectively, only if pole v is used. Constraints (3p)
and (3q) prohibit the deployment of two pieces of LTE equipment near each other
or close to a macrocell, respectively. Note that Constraint (3q) may be redundant
since closeby pole/macrocell pairs are discarded in a preprocessing phase.

The last block of constraints (3r–3z) is related to flow. Constraint (3r) lim-
its the flow outgoing from demand blocks. Constraints (3s) and (3t) ensure that
Wi-Fi and LTE capacities are respected. Constraint (3u) limits the capacity of
wireless arcs to the retransmitter capacity. Constraint (3v) enables unlimited flow
on fibered links when M ≥

∑
v∈V d dv. Constraint (3w) limits the retransmitter ca-

pacity as discussed in Section 2.3 (note that only backhaul flow is considered in this
constraint). Constraint (3x) is the classical flow conservation constraint. Finally,
Constraint (3y) applies the retransmitter capacity to BTAs, while Constraint (3z)
limits macro cellsite traffic. All integrality requirements are omitted since they are
described in the beginning of this section.

5. Solution procedure using BRKGA

Because of the large-scale nature of practical instances of MIP (3), it can be
difficult to solve the WBNDP using an exact approach, such as a branch-and-
cut algorithm. Typically, these instances are situated in regions of approximately
80 km2 with about 15 macrocells, 130 VRADs, 3,200 utility poles, and 16,000

BRKGA FOR WIRELESS BACKHAUL NETWORK DESIGN 13

demand blocks. Although the underlying graph is relatively sparse, the number
of valid solutions can be huge. To deal with this situation, we propose a Biased
Random-Key Genetic Algorithm (BRKGA) to solve the WBNDP. See Gonçalves
and Resende (2011a) for an introduction to BRKGA. The main reason for opting
for a BRKGA is that this metaheuristic has been shown to be adaptable to a wide
variety of combinatorial optimization problems, such as packing (Gonçalves and
Resende (2011b)), routing (Andrade et al. (2013)), and clustering (Andrade et al.
(2014)).

From an implementation point of view, most of the effort in building a BRKGA
focuses on devising a decoder, which takes as input a vector of random keys and
outputs a valid solution for the problem. The decoding phase for the WBNDP
consists in iteratively building acyclic directed graphs and the computation of max-
imum flows, costs, and revenues. This procedure builds the solution in a bottom-up
fashion, starting at the root nodes and ending at the demand nodes. Since the
WBNDP has a large number of peculiarities, the design of a decoder is not trivial
and consists of a number of intermediate steps. In the next subsections, we describe
each of these steps.

5.1. Representation. Given an instance of the problem, without loss of generality
we assume that the utility poles are listed in an arbitrary but fixed order V s =
(p̄1, . . . , p̄n) where n is the number of poles. We also assume that the root nodes
are listed in an arbitrary but fixed order beginning with macrocells and ending with
the FAPs, i.e, V r = (m̄1, . . . , m̄α, f̄1, . . . , f̄β) where α is the number of macrocells
and β is the number of FAPs.

A chromosome is a vector of real numbers v ∈ [0, 1]5n. This vector is partitioned
into five sections whose values are used to build the backhaul network. Each value
is associated with a utility pole through an index given by V s. As we explain below,
each pole is associated with five values, or keys, of the chromosome, one in each
partition.

The first section consists of values v1, . . . ,vn that define which poles are present
in the solution and their deployment order. The deployment order defines the
sequence of LTE equipment installation. We refer to this first group as κA =
(v1, . . . ,vn).

The second section consists of the values vn+1, . . . ,v2n which are used as acti-
vation parameters. They determine whether:

• an LTE equipment is deployed on the utility pole (L or NL);
• the utility pole is connected via fiber (F or NF);
• the utility pole connects directly to a FAP or a macrocell (D or ND).

Using this notation we have:

- vi ∈ [0.000, 0.125), then: NL, NF, ND;
- vi ∈ [0.125, 0.250), then: NL, NF, D;
- vi ∈ [0.250, 0.375), then: NL, F, ND;
- vi ∈ [0.375, 0.500), then: NL, F, D;
- vi ∈ [0.500, 0.625), then: L, NF, ND;
- vi ∈ [0.625, 0.750), then: L, NF, D;
- vi ∈ [0.750, 0.875), then: L, F, ND;
- vi ∈ [0.875, 1.000), then: L, F, D.

14 C.E. ANDRADE ET AL.

The first parameter controls how to distribute LTE equipment and, as a conse-
quence, how the demands are distributed amongst them. Furthermore, it may be
valuable not to install LTE on a given utility pole even if there is nearby demand,
since the cost/benefit ratio may be too low or negative. The second parameter dic-
tates if a pole can be connected by fiber. It is used in cases where the utility pole
is connected to a macrocell by fiber or by a wireless link. Again, this parameter
controls the cost/benefit ratio. Lastly, the third parameter dictates the minimum
tree level in which a pole appears in the backhaul network. We refer to these keys
as κP = (vn+1, . . . ,v2n).

The third section κO = (v2n+1, . . . ,v3n) defines the evaluation order of the
utility poles as the network is grown. This order is used to build the next level of
nodes in the forest. Suppose, for example, that a utility pole is already connected to
the network and that it can only support one additional backhaul connection (i.e.,
Constraint (3i) is nearly saturated). If there are two other poles to be connected to
this one, the order induced by κO will define which pole will be connected. Another
order induced by κO

′
can potentially generate a different network.

The fourth section κN = (v3n+1, . . . ,v4n) defines the evaluation order of a pole
neighborhood. Suppose that a pole is about to be included in the network and
that it has two or more previously deployed neighbor nodes with utility poles to
which it can connect. The order induced by κN will determine to which neighbor
the connection will be made.

Lastly, the fifth section κL = (v4n+1, . . . ,v5n) defines the minimum tree level on
which a utility pole can be placed. We understand as level the number of wireless
hops between a utility pole and a root node. The root nodes and fibered utility poles
are considered to be at level zero. Thus, the remaining poles are distributed among
levels 1 through H. The minimum level of utility pole i is given by b(H + 1)κLi c.
If the minimum level of pole i is zero, it can be placed in any tree level. If it is
one, pole i can only be placed in level 1 or above. In this case, the pole cannot be
connected by fiber.

Although at first glance, there is a superposition of functionalities among the
several keys, we see below that each key plays a very particular role in the process
of network construction.

5.2. Decoder. Algorithm 1 shows the basic steps to decode a chromosome into a
valid solution. It consists of several procedures described in Algorithms 2–5. In
addition to the above discussion, the algorithms also make use of the following
definitions:

• parent(p): indicates which utility pole, macrocell, or FAP that pole p is
linked to, i.e., arc (p, parent(p)) exists in the backhaul network;
• children(p): set of poles linked to p, i.e., there exist links (w, p) for w ∈

children(p);
• level(p): indicates the level in which pole p is placed in the tree;
• fibered(p): indicates if pole p is linked by fiber to a root node;
• deg+(p): number of arcs leaving p (i.e., outgoing degree of p);
• CP : set of the most external poles in the current stage of network con-

struction, i.e., the leaves of current forest;
• TK : set of all utility poles in current forest. Note that CP ⊆ TK ;
• NL: set of utility poles to be considered for connection in the next forest

levels.

BRKGA FOR WIRELESS BACKHAUL NETWORK DESIGN 15

The first step is to choose which poles can be added to the solution. Line 1 of
Algorithm 2 chooses the poles whose keys have a value greater than or equal to
0.5, and activates these poles in an order defined by their key values. Therefore,
for each activated pole, we install Wi-Fi and LTE equipment in the given order
when there is demand in the access radii of the pole. In the case of LTE, we need
to check whether the pole is sufficiently far from any macrocell or other poles with
previously installed LTE equipment.

The construction of the backhaul forest is an iterative bottom-up process. First,
we create the first level connecting poles to the root nodes using Algorithm 3. Sets
CP ,TK , and NL are initially empty. We initialize pole levels to indicate that
level assignment has not yet been made. Likewise, we initialize no connectivity
by fiber to all poles (lines 1 and 2). We add to CP , the set of current poles, all
active neighbors of each root node (lines 3 and 5) sorted in non-increasing order
of their corresponding keys in the chromosome (line 6). Using this permutation,
we try to connect each pole to a FAP or a macrocell obeying the minimum level
and activation parameters (note that the function extractparameters() returns
a triple according to the description of Section 5.1). If a connection by fiber is
allowed, we choose the closest FAP or macrocell under the maximum distance
constraint (line 12) and connect the pole to the chosen root node, setting it as
“parent” of this pole, and placing the pole in the set of children of the root node.

Algorithm 1: Decoder.

1 Define the activation order and install (LTE) equipment in the poles;

2 Build the backhaul graph;

3 Remove non-used pieces of equipment and poles (1st phase);

4 Compute the maximum flow. Let fmax be the value of maximum flow;

5 Remove non-used pieces of equipment and poles (2nd phase);

6 Compute the cost over the time window of Y years. Let Ctotal be the total

cost;

7 Compute the revenue over the time window of Y years. Let Rtotal be the

revenue obtained;

8 return Rtotal − Ctotal

Algorithm 2: Equipment activation and installation.

1 Let L be a pole list in non-increasing order of key κA such that p ∈ L iff

κAp ≥ 0.5. Each p ∈ L is said active and each p′ /∈ L is said inactive;

2 foreach p ∈ L in the given order do
3 if ∃v ∈ V d : d(p, v) ≤ Rwifi then
4 Install a Wi-Fi equipment on p;

5 if (κPp ≥ 0.5) and (∃v ∈ V d : d(p, v) ≤ Rlte) and
(@v ∈ V m : d(p, v) ≤ δmacro) and (@v ∈ V s : lte(v) = 1 and d(p, v) ≤ δlte)
then

6 Install a LTE equipment on p;

16 C.E. ANDRADE ET AL.

Algorithm 3: Building of backhaul forest (level 0).

1 CP ← ∅; TK ← ∅; NL← ∅;

2 foreach p ∈ V s do level(p)← −1; fibered(p)← 0;

3 foreach r ∈ V r do
4 Let N−r = {p ∈ V s : (p, r) ∈ E and p is active};
5 CP ← CP ∪N−r ;

6 Let Π to be a permutation of CP induced by the non-increasing order of

correspondent keys in κO;

7 foreach p ∈ Π in given order do
8 minimum level ← b(H + 1)κLp c;
9 (ˆ̀, f̂ , d̂)← extractParameters(κPp);

10 if d̂ = ‘D’ and minimum level ≤ 1 then

11 if f̂ = ‘F’ then
12 Choose r = argminr′∈V r (dist(p, r)−Rfiber) ≤ 0;

13 if r exists then
14 parent(p)← r;

15 children(r)← children(r) ∪ {p};
16 level(p)← 0;

17 fibered(p)← 1;

18 TK ← TK ∪ {p};

19 if level(p) = −1 then
20 Let N+

p = {m ∈ V m : (p, bta(m)) ∈ Asmw} and consider that N+
p is

in the order induced by V r;

21 i← b|N+
p |κNp c;

22 begin ← i; repeated ← false;

23 while level(p) = −1 and not repeated do
24 if deg+(N+

p [i]) < δ+
bh then

25 parent(p)← N+
p [i];

26 children(N+
p [i])← children(N+

p [i]) ∪ {p};
27 level(p)← 1;

28 deg+(N+
p [i])← deg+(N+

p [i]) + 1;

29 TK ← TK ∪ {p};
30 else
31 i++;

32 if i = |N+
p | then i← 1;

33 repeated ← (i = begin);

34 if level(p) = −1 then
35 CP ← CP \ {p};
36 NL← NL ∪ {p};

BRKGA FOR WIRELESS BACKHAUL NETWORK DESIGN 17

As it is a fibered connection, we consider that the pole is in level zero. If it is not
possible to connect by fiber, we try to create a wireless link. To do this, we create a
list of neighbor root nodes of the pole which will be visited circularly from the point
i determined by the corresponding key in the chromosome. This is done until we
obtain a connection (lines 20–33). Note that, in this case, the pole will be in level 1
and its parent will have its incoming degree incremented by one (lines 27 and 28).
In the last case, when it is impossible to make a connection, we remove the pole
from the set CP of current poles and place it in the set NL of poles for consideration
in the next level.

After the first level of the backhaul forest is created, set CP consists in the poles
that are forest leaves. From them, Algorithm 4 tries to augment the reach of the
network. First, we add to list NL the neighbor poles of CP that are active, in
the line of sight with some pole in CP , and are not yet part of the forest. We
only consider neighbors from poles whose incoming degree is not saturated (line 3).
These operations are described in lines 2–8. After constructing these lists, we
consider the poles in NL as current poles and take a permutation according to the
order induced by the chromosome keys. The remainder of the algorithm (lines 12–
28) is similar to Algorithm 3 with respect to wireless connections. Note that at the
end of this procedure, set NL may have poles that are not connected to any tree.
These poles will be eliminated from the solution in a pruning phase.

After the complete construction of the backhaul forest, it is possible that there
exist active poles not used in the forest, or yet poles present in the forest but
not serving any demand. Algorithm 5 removes these poles. We have two pruning
phases. The first occurs after the construction of the backhaul forest and the second
after the maximum flow computation. In the first phase, we generate a “virtual”
flow in each arc only present for the convenience of the algorithm. Thus, a recursive
pruning procedure is applied in each root node (pruneSubtree()). This procedure
traverses each tree using the depth-first strategy until it reaches a leaf node. This
way it verifies if demand is served by this leaf node using either Wi-Fi or LTE
(lines 5–8). In case demand is present, the pole is kept. If there is no demand but
the pole has chidren nodes, then we can deduce that the pole is being used only as a
retransmitter and we keep the pole in the forest. Otherwise, the pole is marked for
later removal from set TK . Note that when the recursion returns, line 3 removes
all marked children.

After the forest construction and first pruning phases, it is necessary to create a
graph induced by this forest to compute the maximum flow from the demand nodes
to the root nodes. As pointed out in Section 2.3, the maximum flow problem to be
solved is neither classical nor straightforward. To solve this problem, we proposed
two solutions which are described in Section 6. Computed the maximum flow, a
second pruning phase is applied to the forest and all non-used pieces of equipment
are removed as described earlier (Algorithm 5).

Lastly, the revenue and the costs are computed. As aforementioned, these cal-
culations may use different approaches depending on the objective of the study.
In this paper, the revenue is derived from the maximum flow directly as shown
in Term (3a) of the objective function of MIP (3). The cost is computed using
the remaining Terms (3b–3f). The total cost depends on the deployed equipment,
deployed fiber, deployment and maintenance costs, and leased traffic. Computed

18 C.E. ANDRADE ET AL.

Algorithm 4: Building of backhaul forest (level ≥ 1).

1 while CP 6= ∅ do
2 foreach p ∈ CP do
3 if deg+(p) < δ+

bh then
4 Let N−p = {p′ ∈ V s : (p′, p) ∈ Ass, p′ is active and p′ /∈ TK};
5 NL← NL ∪N−p ;

6 foreach p ∈ NL do
7 N+

p ← {p′ ∈ CP : (p, p′) ∈ Ass};

8 ∀p ∈ V s, sort N+
p in a non-increasing order of dist(p, q) such that q ∈ N+

p ;

9 CP ← NL;

10 NL← ∅;

11 Let Π to be a permutation of CP induced by the non-increasing order of

correspondent keys in κO;

12 foreach p ∈ Π do
13 minimum level ← b(H + 1)κLp c;
14 i← b|N+

p |κNp c;

15 begin ← i; repeated ← false;

16 while level(p) = −1 and not repeated do
17 if deg+(N+

p [i]) < δ+
bh then

18 parent(p)← N+
p [i];

19 level(p)← level(N+
p [i]) + 1;

20 deg+(N+
p [i])← deg+(N+

p [i]) + 1;

21 TK ← TK ∪ {p};
22 else
23 i++;

24 if i = |N+
p | then i← 1;

25 repeated ← (i = begin);

26 if level(p) = −1 then
27 CP ← CP \ {p};
28 NL← NL ∪ {p};

Algorithm 5: Equipment and poles pruning.

1 if first phase then
2 foreach e ∈ E do
3 fe ← 1;

4 foreach r ∈ V r do
5 pruneSubtree (r);

6 Mark as inactive all p /∈ TK that is marked as active;

BRKGA FOR WIRELESS BACKHAUL NETWORK DESIGN 19

the revenue and costs, the profit is returned as the solution value and fitness of the
current decoded chromosome.

6. Maximum Backhaul Flow Problem

6.1. Bounds. As pointed out in Section 2.3, wireless backhaul equipment has very
specific constraints with respect to the reception and retransmission of backhaul
traffic. These constraints are mainly related to the physical proprieties of the wave
spectrum used. This way, the total capacity of reception and retransmission is
limited to a certain constant Ubh . At the same time, this equipment also collects
local traffic sent by other equipment, such as Wi-Fi and LTE receptors.

For a given retransmitter v, we can assume three distinct components. The
first component is the incoming backhaul traffic, denoted by F ib , such that F ib =∑
u∈V s:(u,v)∈Ass fuv, i.e., the sum of backhaul traffic sent to v from neighbors. The

second component is the access traffic, denoted by Fa, which is the sum of the
Wi-Fi and LTE traffic in v, i.e., Fa = fwta(v),v + flta(v),v.

1 The third component is

the outgoing backhaul traffic, denoted by F ob , such that F ob = fv,parent(v) = F ib +Fa.
The relationship among these components is given by Inequality (1), that restricts
the backhaul flow capacity, and by Equation (2) that ensures flow conservation.
The difficulty is that classical maximum flow algorithms do not deal with these
restrictions at the same time and, as far as we know, there is no reduction from the
maximum backhaul flow problem to any classical flow problem.

One way to bypass this problem is to consider the access traffic as incoming
backhaul traffic. Thus, note that

(4) F ib + Fa + F ob ≤ Ubh .

However F ib + Fa = F ob , which leads us to

(5) F ob ≤
Ubh

2
∀v ∈ V s.

Procedure pruneSubtree(r).

1 foreach p ∈ children(r) do
2 pruneSubtree (p);

3 Remove from children(r), all p marked to remotion;

4 if r ∈ V s then
5 if deg+(wta(r)) = 0 or f(wta(r),r) = 0 then
6 wifi(r)← 0;

7 if deg+(lta(r)) = 0 or f(lta(r),r) = 0 then
8 lte(r)← 0;

9 if |children(r)| = 0 and wifi(r) = lte(r) = 0 then
10 Mark r to remotion;

11 TK ← TK \ {r};

1Notation detail: fu,v = fuv

20 C.E. ANDRADE ET AL.

In this case, as both incoming flows are of the same kind, it suffices to bound
either the incoming or outgoing flow to half of the original capacity. The major
drawback of this approach is the large flow loss that may result. Suppose, for
example, a backhaul capacity of Ubh = 100, backhaul incoming flow of F ib = 30,
and an access flow of Fa = 40. Using the previous technique, we will have the
nominal capacity of U ′bh = 50 in the outgoing arc, which limits the maximum flow
to the same value. In this case, 20 units of traffic, either demand or backhaul traffic,
cannot be backhauled. But note that using the original constraints, all traffic can
be routed since the outgoing traffic would F ob = Fa + F ib = 70 that respects the
capacity constraint (F ib + F ob = 30 + 70 = 100 = Ubh). In fact, we can provide a
bound on this loss using simple algebra. Note that the most constraining factor is
the incoming backhaul traffic. As it tends to zero, it enables the increase of the
capacity of the outgoing traffic, thus allowing more access traffic be routed (see
Lemma 1 below). Consider Inequality (1) in terms of access traffic:

F ib + F ob ≤ Ubh

F ib + F ib + Fa ≤ Ubh

Fa ≤ Ubh − 2F ib .(6)

Now consider Inequality (4) in terms of access traffic:

F ib + Fa + F ob ≤ Ubh

2F ib + 2Fa ≤ Ubh

Fa ≤
Ubh − 2F ib

2
.(7)

Taking the limit of the proportion between Inequalities (6) and (7) when the in-
coming backhaul traffic tends to zero, we have:

(8) lim
F i

b→0

Ubh−2F i
b

2

Ubh − 2F ib
=

1

2
.

Therefore, the proposed simplification may cause a loss of up to 50% in access
traffic (and, consequently, total traffic) that the network can transport. Although
the theoretical bound is not very good, this approach leads to reasonable results in
practice, as shown in Section 8.2. The following lemmata also give us bounds on
the flows in the forest.

Lemma 1. Consider a vertex v ∈ V s with access capacity Ubh , F ob be the outgoing
backhaul traffic from v, and Fa be the value of the access traffic incoming in v.
Then, F ob is maximum only if Fa is maximum.

Proof. The proof is simple by inspection of the maximality. First, note that we
want to maximize F ob = Fa + F ib . But, by constraint capacity (1), we have that

F ib+F ob ≤ Ubh which means that F a+2F ib ≤ Ubh . Let 0 ≤ F̂a < Fa and 0 ≤ F ib < F̂ ib
and suppose that F̂a and F̂ ib yield the maximum flow F̂ ob . Suppose that F̂ ib is

maximum which means that F̂ ib = Ubh/2 enforcing F̂a = 0. Therefore F̂ ob = Ubh/2.

But choosing F ib = F̂ ib − ε, we have that Fa + 2(Ubh/2− ε) ≤ Ubh which is Fa ≤ 2ε.

Therefore maxF ob = 2ε+Ubh/2−ε = ε+Ubh/2 > F̂ ob contradicting the maximality

of F̂ ob . �

BRKGA FOR WIRELESS BACKHAUL NETWORK DESIGN 21

Lemma 2. Let v ∈ V s such that v is in level 1 or greater in the backhaul forest.
Let T (v) be a subtree of Steiner vertices rooted at v. For all vertices x, y ∈ T (v)
such that arc (x, y) ∈ A, fxy ≤ Ubh/2.

Proof. Let N b(v) be the neighbor vertices of v that send to it backhaul traffic. Also
consider Fa and F ob as defined before.

Let x ∈ T (v) such that (x, v) ∈ A. Therefore:∑
u∈Nb(v)

fuv + F ob ≤ Ubh

fxv +
∑

u 6=x∈Nb(v)

fuv + F ob ≤ Ubh

fxv ≤ Ubh − F ob −
∑

u6=x∈Nb(v)

fuv

which leads us to

fxv ≤ Ubh − F ob −
∑

u6=x∈Nb(v)

fuv

= Ubh −

 ∑
u∈Nb(v)

fuv + Fa

 −
∑

u 6=x∈Nb(v)

fuv

= Ubh − fxv − 2
∑

u6=x∈Nb(v)

fuv − Fa

=
Ubh − 2

∑
u6=x∈Nb(v) fuv − Fa

2
≤ Ubh/2.

As T (v) is a tree, all descendent arcs of v have their capacities bounded by Ubh/2
since v is the unique output vertex in T (v). �

Lemma 1 shows that it is worthwhile to route the maximum access traffic avail-
able at a pole. Although this lemma is valid for all poles, it may be enforced in
nodes at level 1 of the forest, since nodes at level 0 have a fiber connection al-
lowing us to route all access traffic and backhaul traffic subject to the processing
constraint. For poles at level 2 or above, we may drop Lemma 1 due to Lemma 2.
Note that by Lemma 2, the capacity Constraint (1) does not play a role at poles
at levels 2 or above since all traffic in those poles will respect this constraint.

6.2. Solution approach. The maximum backhaul flow problem can be solved to
optimality using a linear programming formulation derived from Constraints (1)
and (2). The major problem with this approach is that, computationally, it is too
slow to be used within the decoder. In Section 8.2, experimental results illustrate
this problem. Another approach is to map this flow problem into a classical maxi-
mum flow problem (Goldberg and Tarjan, 1988). One way to implement backhaul
capacity constraint (1) in a classical maximum flow problem, is to set capacities on
arcs instead of node equipment. To guarantee feasibility, one sets the capacities of
all arcs connecting pairs of poles and arcs connecting pairs of poles/BTAs to half of

22 C.E. ANDRADE ET AL.

the backhaul capacity, i.e, Ubh/2. Restricting capacity this way enables the utiliza-
tion of classical flow algorithms at the expense, however, of potentially producing
suboptimal flows.

Consider a forest generated with Algorithms 2–5. In particular, consider the
set TK of poles determined to be in the backhaul network. The maximum flow
is computed over the graph induced by TK . For this, we take all vertices in TK
and create subsets WTA′ and LTA′ restricted to poles in TK . This means that
WTA′ ⊆WTA and LTA′ ⊆ LTA since not all poles are in the forest and, for some
poles, LTE equipment are forbidden. We also create the set BTA′ with vertices that
aggregate wireless backhaul traffic in the macrocells. Note that a BTA exists in a
macrocell only if it has children connected to it by wireless links. If all children are
connected by fiber, then neither backhaul equipment nor a BTA is needed. Vertices
in V d and V r also are considered when they are part of the backhaul forest. We
add the vertex s to be the source node and vertex t to be the sink. We consider
all arcs induced by the chosen vertices and create arcs from s to all demands and
from all root nodes to t. In the following, define cap : E → R+ be the capacity of
an arc:

• For arc a incident to v ∈ V d, let cap(a) = dv;
• For arc a, outgoing from vertex:

– v ∈WTA, let cap(a) = Uwifi ;
– v ∈ LTA, let cap(a) = Ulte ;
– v ∈ MTA, let cap(a) = Umc ;
– v ∈ BTA, let cap(a) = Ubh ;
– v ∈ V r, let cap(a) =∞;

• For each arc a ∈ Ass ∪Asmw , let cap(a) = Ubh/2;
• For each arc a ∈ Asv ∪Asmf , let cap(a) = Ubh .

Note that, although the fibered links in set Asv ∪ Asmf are considered to have
unlimited capacity, we set their capacities to the capacity of retransmitter, modeling
the incoming wireless backhaul traffic. In such case, we may lose access traffic if the
pole with the fibered link has Wi-Fi and/or LTE traffic. To overcome this, we do
the following. Let v be a pole with a fibered link to some root node w. We remove
the arcs (wta(v), v) and (lta(v), v) and add the arcs (wta(v), w) and (lta(v), w) with
the same respective capacities. Such change allows the maximum access traffic to
by-pass pole v and only limits the incoming backhaul traffic. Since we remove
capacity Constraint (1), we may use any classical maximum flow algorithm to solve
the maximum backhaul flow problem.

As noted above, our approach may generate a suboptimal flow. To improve this,
we propose a pumping algorithm to augment the generated flow. This algorithm is
inspired on the push-relabel algorithm of Goldberg and Tarjan (1988) using Lem-
mata 1 and 2. The general idea is to push residual flow from the root vertices to
the demand vertices observing Lemmata 1 and 2 and the capacity constraints. For
each vertex v, let excess(v) be the excess flow in v that must be pushed away. Algo-
rithm 6 considers each root vertex and pumps flow through its subtrees. Lines 3–7
treat the fibered connections. For each child pole, the maximum flow increment is
computed and passed to it as excess traffic. Then a procedure applied only to poles
in level zero is called, and upon return, the flow is accumulated. In lines 10–19, the
wireless connections are considered. In this case, the maximum flow of Ubh must
be shared with all wirelessly connected children. This is done by computing the

BRKGA FOR WIRELESS BACKHAUL NETWORK DESIGN 23

Algorithm 6: Pumping Root.

1 Let r be a FAP or macrocell;

2 frt ← 0;

3 foreach p ∈ children(m) such that fibered(p) = 1 do
4 excess(p)← Cbh − fpr;
5 fpr ← Cbh ;

6 pumpPoleLevelZero(p);

7 frt ← frt + fpr;

8 if r is not a macrocell then
9 return;

10 excess(r)← Cbh − fbta(r),r;

11 fbta(r),r ← 0;

12 foreach p ∈ children(r) such that fibered(p) = 0 do
13 maxflow ← min(excess(r), Cbh − fp,bta(r));

14 excess(r)← excess(r)−maxflow ;

15 excess(p)← excess(p) + maxflow ;

16 fp,bta(r) ← fp,bta(r) + maxflow ;

17 pumpPoleLevelOneorMore(p);

18 fbta(r),r ← fbta(r),r + fp,bta(r);

19 frt ← frt + fp,bta(r);

Algorithm 7: pumpPoleLevelZero(p).

1 fp,parent(p) ← fwta(p),p + flta(p),p;

2 foreach c ∈ children(p) do
3 maxflow ← min(excess(p), Cbh − fcp);
4 excess(p)← excess(p)−maxflow ;

5 excess(c)← excess(c) + maxflow ;

6 fcp ← fcp + maxflow ;

7 pumpPoleLevelOneorMore(c);

8 fp,parent(p) ← fp,parent(p) + fcp;

9 excess(parent(p))← excess(parent(p)) + excess(p);

10 excess(p)← 0;

maximum flow from the remaining capacity and excess. Since wireless children are
considered be in level two or greater, a special procedure is called to treat this case.
Again, the totals are accumulated.

Algorithm 7 deals with poles at level zero. Since the above described by-pass
guarantees that access traffic is maximum, one can limit their attention to only
the incoming backhaul traffic. The algorithm just accumulated the access traffic
(line 1) and pumped the maximum allowed flow to the children poles. In the end,
if the pole has excess flow, it is pumped back to the parent vertex (line 9).

24 C.E. ANDRADE ET AL.

Algorithm 8 deals with poles at level 1 or greater. The basic idea is the same of
previous algorithms except that one must pay attention to the backhaul capacity
and Lemmata 1 and 2. Considering Lemma 1, lines 2–16 aim to first maximize the
access traffic. This block is considered twice: once for Wi-Fi and once for LTE.
Because of this, we rename some terms to reduce the algorithm (lines 2 and 15).
After the maximization of the access traffic, lines 22–35 try to push the remaining
flow to the children nodes using a recursive call. As in other pumping algorithms,
in the last two lines the excess is pumped back to the parent vertex. The key of this
algorithm are lines 4–7 and 18–21. If the pole is in level 1, the access flow is given
by Equation (7) using simple substitution (the same occurs for the backhaul traffic
in line 18). If the pole is in level two or greater, Lemma 2 comes into scene limiting
the traffic to at most Cbh/2. In this case, we can consider that all traffic flows are
of the same type and calculate the maximum local flow from the residue flow of
all types. This ensures that the flow through that pole will respect the capacity
constraint.

Note that the proposed pumping heuristic has no relabel phase as in the push-
relabel algorithm. The pumping algorithm ends after no more pushing is possible
in the recursive calls and, therefore, its run-time complexity is O(n). Furthermore,
the resulting flow is sensitive to the order that the poles are visited. Although the
optimum flow is not guaranteed to be found, the pumping heuristic can improve
the flow considerably (see Section 8.2 for more details).

7. Experimental Setup

7.1. Instances and scenario descriptions. In this section, we describe the setup
of the computational experiments performed to analyze the algorithms presented in
this paper. The experiments were conducted using 30 instances derived from real-
world scenarios. These instances are taken from neighborhoods of a large city in the
United States. Each instance consists of a set of macrocells, VRADs, utility poles,
and demand blocks. For each location, longitude and latitude coordinates are given.
For each macrocell and utility pole, a list of street segments is given. We assume
that if two locations share a segment, they are in the line of sight of each other.
For each block, a traffic demand is given. For each macrocell and VRAD, there
is an indication of whether traffic through them is leased or not. We classify the
instances as small, medium, and large according the number of poles. Each class has
ten instances. Table 1 shows a summary and Table A.1 (in AppendixA)2 brings
a complete description. The areas of the regions were computed for illustrative
purposes only. The calculation of each area was based on the convex hull considering
all locations in the region and their geodesic characteristics. Instance re01 is the
smallest in terms of number of poles with 454 poles while instance re30 is the
largest with 8740 poles. In terms of area, the smallest instance is re19 with 4.82
km2 and the largest is re30 with 411.71 km2.

While all locations are real, the demand values are based on estimates of the
actual demand and are scaled in an arbitrary range. The access radii, minimum
distances, capacities, and backhaul constraints are real-life constraints and are dis-
played in Table 2. We also consider a scenario where the backhaul trees have
restrictions neither in depth nor in breadth, and therefore the maximum number

2AppendixA is available in the end of this document. It will be posted in the proper repository
on-line.

BRKGA FOR WIRELESS BACKHAUL NETWORK DESIGN 25

Algorithm 8: pumpPoleLevelOneorMore(p).

1 bf ←
∑
c∈children(p) fcp;

2 Let ω be wta(p), φ be fwta(p),p, Φ be flta(p),p, and Γ be Cwifi ;

3 maxflow ← min(excess(p),Γ− fωp);

4 if level(p) = 1 then
5 maxflow ← min(maxflow , Cbh − 2bf − Φ);

6 else
7 maxflow ← min(maxflow , Cbh/2− (bf + φ+ Φ));

8 foreach b ∈ V d such that (b, ω) ∈ E do
9 maxinc ← min(maxflow , fsb − fbω);

10 fbω ← fbω + maxinc;

11 φ← φ+ maxinc;

12 maxflow ← maxflow −maxinc;

13 excess(p)← excess(p)−maxinc;

14 if ω = wta(p) then
15 Let ω be lta(p), φ be flta(p),p, Φ be fwta(p),p, and Γ be Clte ;

16 Go to line 3;

17 fp,parent(p) ← fwta(p),p + flta(p),p;

18 if level(p) = 1 then
19 residue ← (Cbh − fp,parent(p))/2;

20 else
21 residue ← (Cbh/2)− fp,parent(p);

22 pushable ← min(residue − bf , excess(p));

23 foreach c ∈ children(p) do
24 maxflow ← min(pushable, Cbh − fcp);
25 if maxflow ≤ 0 then
26 fp,parent(p) ← fp,parent(p) + fcp;

27 Go to line 23;

28 t← excess(p);

29 excess(p)← excess(p)−maxflow ;

30 excess(c)← excess(c) + maxflow ;

31 fcp ← fcp + maxflow ;

32 pumpPoleLevelOneorMore(c);

33 fp,parent(p) ← fp,parent(p) + fcp;

34 bf ← bf − excess(p) + t;

35 pushable ← min(residue − bf , excess(p));

36 excess(parent(p))← excess(parent(p)) + excess(p);

37 excess(p)← 0;

26 C.E. ANDRADE ET AL.

of hops H and the maximum number of incoming backhaul links δ+
bh are unlimited

(in practice, they are the number of poles in the instance). We call this scenario
unrestricted in opposition the restricted real-life scenario. The revenue factor and
the costs are based on actual values but are also scaled in an arbitrary range. It
is worthwhile to mention that the revenue factor, costs, and demands were scaled
similarly so as to mimic real world values.3 The size of the fibered hop, `uv, is de-
fined by the geodesic distance, in meters, between locations u and v. We consider
a 3-year planning horizon, i.e. Y = 3.

7.2. Instance preprocessing. The instance preprocessing aims to reduce the size
of the instance and build the base graph that represents the potential wireless and
fibered links, and the arcs representing the links between the demands points and
access equipment. This graph is built using the definitions of Section 4. Note
that, due to the minimum distance constraint between a macrocell and an LTE
equipment, a pole u has an LTA associated with it if and only if for each macrocell
v, dist(u, v) ≥ δmacro .

The first step is to prune poles that will never be used in feasible solutions. To
do this, we calculate the shortest path from each root node to each utility pole
annotating the size of the shortest path from any root node to that utility pole. We
consider that wireless arcs have weight one and fibered arcs have weight zero. Such
paths represents the minimum level that a pole can have in the forest. Let q be the
length of the shortest path from pole u to its closest root node. All poles for which
q is greater than the maximum number of hops allowed (i.e., q > H) are eliminated
since they cannot be used in any valid solution. Note that the corresponding WTA
and LTA vertices are also deleted.

The distances are also used to create the x variables of MIP (3). We only define
the variables xpuv, for p = q, . . . ,H, and (u, v) ∈ A. Note that as u can be in level
q or greater, the outgoing backhaul link (u, v) can only be in level q or greater.
This preprocessing significantly reduces the size of the MIP and, consequently, the
computational time needed to solve it.

Another important observation is that several demand blocks may be served by
the same group of poles and macrocells. This is particularly true for residential
buildings and commercial areas. In such cases, we group these blocks making
a super block whose demand is the sum of the demands of the original blocks.
However, at the conclusion of the optimization, it will be necessary to “ungroup”
these super blocks and redistribute the access flow to the original blocks.

Table 1. Summary of instance characteristics. The presented
values are averages of the numbers of respective locations and are
rounded to the next integer (except the demand and area).

Type Poles VRADs Macros Blocks Demand (Mbps) Area (km2)

Small 718 63 10 3907 8210.70 35.92
Medium 2281 86 14 17306 36348.00 72.14

Large 6396 243 22 25566 53601.00 132.87

3Disclaimer: these are generalized costs and revenues to assess performance of the algorithms
and do not imply an actual business case for any carrier.

BRKGA FOR WIRELESS BACKHAUL NETWORK DESIGN 27

Table 2. Description of equipment capacities, design constraints,
revenue factor, and costs. The values reflect usual assumptions
made in practice.3

Short Description Symbol Value Unit

Wi-Fi radius Rwifi 100
LTE radius Rlte 400
Macrocell radius Rmc 3000
Retransmitter radius Rbh 1000

M
et

er
s

Wi-Fi capacity Uwifi 100
LTE capacity Ulte 20
HSPA capacity Umc 25
Retransmitter capacity Ubh 100

M
b
p
s

LTE to LTE min. distance δlte 300
LTE to macro min. distance δmacro 500
Max. fiber size Rfiber 300 M

et
er

s

Max. # of incoming links δ+bh 5 / ∞
Max. # of wireless hops H 2 / ∞ U

n
it

s

Revenue factor % 150.00
Equipment deployment Cp 90.00
Wi-Fi Cwifi 12.00
LTE Clte 70.00
Backhaul equip. (fan-in = 1) Cfan1 40.00
Backhaul equip. (fan-in ≥ 2) Cfan2 70.00
Maintenance (annual) Cman 120.00
Macrocell (annual) Cmc 1050.00
Meter of deployed fiber Cfiber 12.00
Leased traffic (in $/Mbps) Cld 10.00

M
o
n
et

a
ry

u
n
it

s

7.3. Post-optimization flow recomputation. At the conclusion of the BRKGA
iterations, we obtain an optimal or near-optimal solution using the strategy de-
scribed in Section 6.2. One may note that if we compute the exact flow using the
forest structure of the best solution found so far, we may be able to improve its
objective function value. Note that this is true since this best solution was obtained
using the heuristic maximum flow algorithm, a lower bound of the actual maximum
flow. In view of this fact, at the end of the BRKGA iterations, we recompute the
maximum flow for the best solution found using the linear programming model with
Constraints (1) and (2). As we compute the exact flow once, the execution time of
entire algorithm is not compromised.

The new linear programming based flow may traverse new paths. In some cases,
some devices will no longer serve demands and can be disregarded. We can apply
Algorithm 5 again to prune such unused equipment. Note that this post-processing
can potentially further reduce the costs and improve the overall solution.

7.4. Computational environment and parameters. The experiments were
conducted on identical machines with four-core Intel Xeon 2.4 GHz CPUs (two
threads per core) and 50 GB of RAM running GNU/Linux. Running times re-
ported are UNIX real wall-clock times in seconds, excluding the effort to read the

28 C.E. ANDRADE ET AL.

instance. The algorithms are implemented in C++ and we use the GNU g++ com-
piler version 4.8. Random numbers were generated by an implementation of the
Mersenne Twister (Matsumoto and Nishimura (1998)). We used the Lemon library
(Dezsõ et al. (2011)) to implement the graph structures and compute the maximum
flow using its push-relabel algorithm implementation.

To tune the BRKGA parameters, we use the iterated racing procedure (Birattari
et al. (2010)). This method consists in sampling configurations from a particular
distribution, evaluating them using either the Friedman test or the t-test, and
refining the sampling distribution with repeated applications of F-Race. We use
the irace package (López-Ibáñez et al. (2011)), implemented in R, for parameter
tuning. For each heuristic, we use a budget of 1,000 experiments in the tuning
procedure, where each experiment was limited to one hour.

The following values were recommended by irace. The population size was
set to p = 500, the elite size to pe = d0.30pe, and the number of mutants to
pm = b0.15pc. The probability of inheriting each allele from the elite parent was
ρe = 0.70. We used the island model (Whitley et al., 1998) with three independent
and concurrent populations where every 100 generations each population exports its
best solution to the other populations. After 300 generations without improvement,
all populations are reset to vectors of random keys. We use four simultaneous cores
for decoding.

To solve the MIP, we used IBM ILOG CPLEX Optimizer version 12.6.0.0. We
set CPLEX to use a maximum of 40 GB of memory, using at most 40 GB of disk
memory when necessary. We allowed CPLEX use four threads in parallel. All other
parameters were kept at their default values. We use a short run of the BRKGA
to generate an incumbent solution for CPLEX. For this, we use BRKGA with the
same parameters as above but limit its run to 100 iterations or 10% of maximum
time, whichever comes first.

We also tested a multi-start algorithm that uses the decoder of Section 5.2. In
each iteration, the multi-start algorithm generates a random vector and uses the
decoding function to obtain a solution. It also keeps the best solution over all
iterations. In the end, the post-processing is applied to the best solution.

Thirty independent runs were performed for the BRKGA and the multi-start
algorithm. Since CPLEX is an implementation of an exact algorithm4, a single run
for each instance was performed. We carried out two types of experiments, one
limiting the running time of each algorithm to one hour and another to five hours.
The limit of one hour enables network designers to work with several models in
a manageable time while the limit of five hours enables a more thorough search.
For both the BRKGA and the multi-start algorithm, we use an additional stop-
ping criterion: 1,000 generations (or iterations) without improvement of the best
solution.

8. Experimental Results and Discussion

8.1. Instance preprocessing. As discussed in Section 7.2, it is important to pre-
process the instance in order to reduce its size before optimization. With respect to
the number of poles, the preprocessing phase in the restricted scenario achieved an
average reduction of 13.00± 16.39% (min = 0.59, 1st Qu. = 2.31, median = 6.06,

4According to its documentation, the IBM ILOG CPLEX Optimizer, version 12.6.0.0 is fully
deterministic when used with its default parameters (as done in our experiments).

BRKGA FOR WIRELESS BACKHAUL NETWORK DESIGN 29

3rd Qu. = 17.97, max = 67.61). For the unrestricted scenarios, the reduction was
4.04± 7.68% (min = 0.15, 1st Qu. = 0.58, median = 1.30, 3rd Qu. = 3.82, max =
39.40), since there is no restriction imposed on depth and breadth of the forest. As
expected, this reduction has more impact on the MIP than it does on the BRKGA.

The reduction in the number of demand blocks was huge in both scenarios:
95.96 ± 1.88% of the original number of blocks for the restricted scenarios (min
= 88.26, 1st Qu. = 95.49, median = 96.25, 3rd Qu. = 97.04, max = 98.05), and
95.65± 2.69% of the original number of blocks for the unrestricted scenarios (min
= 85.67, 1st Qu. = 95.45, median = 96.17, 3rd Qu. = 96.98, max = 98.05). This
fact is mainly due to the concentration of demand blocks in residential buildings
and commercial areas. On average, each super block corresponds to 30.97± 11.43
original blocks.

The instance graphs that result from preprocessing are sparse. In the restricted
instances, the number of vertices varies from 717 to 25,690 and the number of
arcs from 6,917 to 314,229. The graph density, given by 2|A|/(|V |(|V | − 1)), has
an average of 0.0056 ± 0.0063. For unrestricted instances, the number of vertices
varies from 1,290 to 27,322 and the number of arcs from 10,224 to 315,330. The
graph density has an average of 0.0043 ± 0.0035. Detailed results can be found in
Tables B.1 and B.2 in the supplementary material.

8.2. Computing flow during the optimization. In Section 6, one can see that
the maximum flow problem embedded in the WBNDP is not trivial and, as far
as we know, a fast combinatorial algorithm to solve it does not exist in the litera-
ture. As commented in Section 6.2, one can solve this flow problem with a linear
programming formulation using Constraints (1) and (2), but this approach can be
too slow to be used in the decoding procedure. Therefore, in the same section, we
presented a fast heuristic, coupled with pumping, to compute the maximum flow.
Given a forest, this section studies the effects of choosing one or the other strategy
to compute the maximum flow.

The first experiment consists of 1,200 independent runs of the decoder. For
each run a random chromosome was generated and decoding was done twice: once
using the heuristic flow algorithm and once using the exact flow algorithm. Then,
the proportional difference in the flow values and solution times were computed.
The heuristic flow algorithm was able to compute an average of 95.19 ± 2.68% of
the maximum flow computed by the exact flow algorithm (min = 79.66, 1st Qu.
= 93.58, 3rd Qu. = 96.47, max = 100.00). We consider this performance very
good even in light of Lemma 1. However, the computing times were extremely
different. Since the decoding process is very fast, we chose to compare the number
of CPU ticks used by each algorithm. The exact flow algorithm used an average of
2027±2080.42% more CPU ticks than did the heuristic flow algorithm (min = 200,
1st Qu. = 800, 3rd Qu. = 2450, max = 15100). This means that the exact flow
algorithm is three orders of magnitude slower than the heuristic flow algorithm.

Figure 2 shows the evolution of the profit as a function of number of iterations
and CPU wall-clock time. For this, we used instance re30 and let BRKGA evolve
for 100 iterations. In Figure 2a the X axis represents the number of iterations and,
in Figure 2b, the wall-clock time in seconds in log scale. The Y-axis represents the
scaled profit in both figures. The shaded area represents the standard deviation.
The red line and dots represent the algorithm using exact flow computation, while
the blue squares and line represent the algorithm using the heuristic flow. The green

30 C.E. ANDRADE ET AL.

triangles and line represent the utilization of heuristic flow and post-processing. In
the experiment with the heuristic flow computation and post-processing, the exact
flow was recomputed (followed by pruning) in each iteration. One may note in
Figure 2a that both heuristic and exact flow are able to generate almost the same
profit in a given iteration. The post-processing approach performs better than the
others since it has a second phase pruning as described in Section 7.3. In terms
of running time, one can note in Figure 2b that the exact flow algorithm obtains
about the same profit as the heuristic but using much more time.

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Iteration

S
ca

le
d

P
ro

fit

Algorithms
Exact
Heuristic
Posproc.

(a) Evolution over iterations.

0.00

0.25

0.50

0.75

1.00

1 10 100
Time (seconds)

S
ca

le
d

P
ro

fit

Algorithms
Exact
Heuristic
Posproc.

(b) Evolution over time.

Figure 2. Evolution of the profit using different flow algorithms.
The shadow around the curves represent the standard deviation.

8.3. Comparing the profit generated by the algorithms. To compare the
algorithms with respect to profit, it is necessary to scale the results since each
instance can have very different profit values. For each instance I, let χI be the set
of values of the solutions found for I, and DI = max(χI)−min(χI). The scaling
is done by the simple transformation

χ′I =

{
(x−min(χI))/DI ∀x ∈ χI and DI > 0,

1 otherwise,

where χ′I is the set of scaled values. Note that all values are scaled to the range
[0, 1].

Using this scaling process, Figure 3 shows the distribution of profits for each
algorithm. The box plots show the location of the first quartile, the profit median,
and the third quartile. The whiskers extend to the most extreme revenue no more
than 1.5 times the length of the box. The dots are the outliers. In the bar labels,
MS stands for the multi-start algorithm, MIP stands for the exact algorithm using
CPLEX and Formulation (3), and BRKGA is the biased random-key genetic algo-
rithm. In the restricted scenario, MIP was able to overcome BRKGA for most small
instances on the one-hour experiments and on most small and medium instances
on the five-hour experiments. BRKGA presented a small variation in its results, al-
though close to those of the MIP in both cases. MS presented a large variation and

BRKGA FOR WIRELESS BACKHAUL NETWORK DESIGN 31

its results were the worst. For medium size instances, BRKGA presented more solid
results while MIP showed more variation for one-hour experiments. In the five-hour
runs, the results were similar to those for the small instances. For large instances,
BRKGA was able to produce very good results when compared to MS and MIP in
both cases. In fact, MIP does not produce any results besides the incumbent value
generated by the BRKGA short run in large instances considering the limit of one
hour. For five hours, only on two instances did MIP improve the incumbent. In
the unrestricted scenario, BRKGA presented the best results. In fact, for all medium
and large instances, MIP was not able to produce any solution (because of memory
issues in building the model).

To confirm the results presented in Figure 3, we tested the normality of these
distributions using the Shapiro-Wilk test and applied the Mann-Whitney-Wilcoxon
U test, considered more effective than the t-test for distributions sufficiently far from
normal and for sufficiently large sample sizes (Conover (1980); Fay and Proschan
(2010)). For all tests, we assume a confidence interval of 99%. For small, medium,
and large instances, the Shapiro-Wilk tests revealed that no profit distribution fits

Algorithms

S
ca

le
d

P
ro

fit

0.0

0.2

0.4

0.6

0.8

1.0

B
R

K
G

A

M
IP M
S

●

●

●

●

●

●●

●

●

●●

●

●●

Small

B
R

K
G

A

M
IP M
S

●●●●

Medium

B
R

K
G

A

M
IP M
S

●
●●
●●
●●●●●●●
●●

●
●●●●●●●

●

●

Large

(a) Restricted scenarios (1h).

Algorithms

S
c
a

le
d

 P
ro

fi
t

0.0

0.2

0.4

0.6

0.8

1.0
B

R
K

G
A

M
IP

M
S

●●●●●●●●●●●●●●●●●●●●●●● ●
●
●

●

●●●●

●

●●
●●
●

●●

Small

B
R

K
G

A

M
IP

M
S

●●

●●

●●●●●●●●
●

Medium

B
R

K
G

A

M
IP

M
S

●●●●●●●●

Large

(b) Unrestricted scenarios (1h).

Algorithms

S
ca

le
d

P
ro

fit

0.0

0.2

0.4

0.6

0.8

1.0

B
R

K
G

A

M
IP M
S

●

●

●

●

●

●●

●

●

●●

●

●
●

Small

B
R

K
G

A

M
IP M
S

●●

Medium

B
R

K
G

A

M
IP M
S

●●●●●
●●●●●
●
●●●●
●
●●
●●●●
●●

●

●

●●●

Large

(c) Restricted scenarios (5h).

Figure 3. Dispersion of profit for each algorithm. Each section
corresponds to a instance class.

32 C.E. ANDRADE ET AL.

a normal distribution since the p-values for all tests are less than 0.01. Therefore,
we applied the U test which assumes as null hypothesis that the location statistics
are equal in both distributions. As several statistical tests were performed, we used
a p-value correction procedure based on false discovery rate (FDR) to minimize the
number of false positives (Type I error) as indicated by Benjamini and Hochberg
(1995).

Table 3 shows U test results for each pair of algorithms and different instance
sizes of the restricted scenario, at a 99% confidence level. The structure of this table
is as follows: Each row and column is indexed by one algorithm. Each element in the
diagonal (bold) is the median of the scaled profit of the corresponding algorithm.
The upper-right diagonal elements are the differences in location statistics for each
pair of algorithms. A positive difference indicates that the “row algorithm” has its
location statistics higher (better) than the “column algorithm,” and the negative
difference is the opposite. The bottom-left diagonal elements are the p-values of
each test. We omitted all p < 0.01 values, that indicate that the difference is
statistically significant for those pairs. We also omitted confidence intervals since
for all tests the values lie in these intervals and are very narrow. One can notice
that almost all comparisons are statistically significant, confirming the box plot
results. The exception is BRKGA and MIP for medium instances using one-hour runs
for which the test was inconclusive since p > 0.01. MS is significantly worse than
the other algorithms except for the one-hour MIP experiments on large instances.
Summarizing, BRKGA was better than MIP on large instances and the opposite was
true for the small instances. For medium-size instances, both apparently performed
in a similar way although we cannot affirm this since p > 0.01. For the unrestricted
scenario, the statistical test only makes sense for the small instances since for the
medium and large instances, MIP did not produce any feasible solution. In this
case, BRKGA presented the median of 0.89, MS presented 0.01, and MIP presented
0.40. The tests indicate that all differences are significant, confirming the box plot.

Table 3. Difference in median location for profit distributions for
the restricted scenario using a confidence interval of 99%. The
omitted p-values are less than 0.008. The diagonal elements repre-
sents the medians, the upper-right elements represent the median
diffence, and the bottom-left elements represent the p-values.

Class
1h experiment 5h experiment

BRKGA MIP MS BRKGA MIP MS

BRKGA 0.92 -0.07 0.84 0.91 -0.08 0.83
MIP 1.00 -0.92 1.00 0.92

S
m

al
l

MS 0.08 0.07

BRKGA 0.96 0.07 0.92 0.92 -0.08 0.89
MIP p > 0.33 0.88 -0.85 1.00 0.97

M
ed

iu
m

MS 0.03 0.03

BRKGA 0.94 0.92 0.89 0.97 0.80 0.95
MIP 0.00 0.03 0.15 0.13

L
ar

ge

MS 0.05 0.02

BRKGA FOR WIRELESS BACKHAUL NETWORK DESIGN 33

Table 4 reports the performance of the algorithms. The first column indicates
the instance class and the second column is the name of the algorithm. The two
large blocks consider experiments limited to one hour and five hours, respectively.
Each block has four columns. Column “% Best” represents the percentage of the
number of instances for which the algorithm found a best solution; column “% Run”
shows a percentage of the number of runs on which the algorithm found a best
solution. The two columns under label “Prod. diff.” show, respectively, the average
of the proportional difference between the value of the best solution found and the
achieved value (%), and its corresponding standard deviation (σ). First, note that
MIP presents the same values for % Best and % Run since only one experiment
is done per instance. Considering the restricted scenario, MIP found 9 of 10 best
solutions, although only one was proved be optimal in the five-hour run. BRKGA

found 20% of best solutions in about 10% of the runs. However, the BRKGA results
are stable and its solutions are within about 5% of the best. MS did not find any
good solution on any instance. For the medium and large instances, the roles of
BRKGA and MIP were exchanged on the one-hour runs. However, MIP obtained all
best solutions on the medium-size instances when it was given five hours to run.
In general, BRKGA did not find best solutions in several runs but presented very
good alternative solutions. MIP found many best solutions but its results varied
considerably. In the unrestricted scenario, BRKGA dominates MS and MIP since the
latter could not solve any instance. BRKGA found the best solutions in 4.16% of the
runs. The average proportional difference between the BRKGA results and the best
solutions found was 13.94 ± 9.67. For detailed results, please refer to Tables B.3
and B.4 in the supplementary material.

8.4. Analyzing a solution. One can note that the WBNDP is a problem rich in
structure from the point of view of network engineering. Similar to the number of
input parameters, a typical output has more than 50 parameters, such as number of
pieces of equipment of each type, flows, coverage, costs, revenue, and other metrics
besides the network structure itself. In this section, we briefly analyze some of these
output parameters considering solutions for the restricted scenario since it is based
on real constraints.

Table 4. Algorithm performance considering the best results
found in restricted scenario.

Class Alg.

1h experiment 5h experiment

Best solutions Prop. diff. Best solutions Prop. diff.

% Best % Run % σ % Best % Run % σ

BRKGA 20.00 10.42 4.55 2.17 20.00 10.41 5.06 2.34
MIP 90.00 90.00 3.30 — 90.00 90.00 2.36 —

S
m

a
ll

MS 0.00 0.00 94.14 124.78 0.00 0.00 94.37 124.71

BRKGA 60.00 2.50 3.27 2.60 0.00 0.00 6.06 2.91
MIP 40.00 40.00 21.33 15.17 100.00 100.00 — —

M
e
d
.

MS 0.00 0.00 64.33 5.03 0.00 0.00 66.16 4.71

BRKGA 90.00 3.75 3.63 2.94 90.00 3.75 3.29 4.68
MIP 10.00 10.00 57.49 7.38 10.00 10.00 50.54 18.44

L
a
rg

e

MS 0.00 0.00 58.11 8.77 0.00 0.00 65.37 8.01

BRKGA 56.67 5.56 3.80 2.65 36.67 4.72 4.81 3.66
MIP 46.67 46.67 40.54 22.76 66.67 66.67 45.72 23.12

A
ll

MS 0.00 0.00 72.20 73.88 0.00 0.00 75.57 74.37

34 C.E. ANDRADE ET AL.

Iteration

S
ca

le
d

va
lu

es

Revenue
Cost

Profit
Coverage

0 100 200 300 400 500 600 700

0
10

20
30

40
50

60
70

80
90

10
0

270 290 310 330 350

70 75 80 85 90

Figure 4. Evolution of revenue, cost, profit, and coverage over
the first iterations of the algorithm. All values are scaled in the
range [0, 100].

Figure 4 shows the evolution of revenue (dark blue line with dots), cost (red line
with squares), profit (light blue with rhombus), and coverage (magenta dashed line
with triangles) for instance re17 for a given run. Revenue, cost, and profit are
scaled to the range [0, 100]. Coverage is already represented in this range. One can
note as the coverage increases, so does the revenue. This is expected since revenue
is a function of traffic volume. Note that while the profit is monotone increasing,
the revenue and cost display some bumps. In the close-up figure showed on the
top right, one can see that both revenue and cost vary up and down while profit
always non-decreasing. Such cases show a phase transition. When both revenue
and cost curves are sloped downwards, the algorithm has found a solution that is
less expensive using less equipment. In bottom right close-up, note that the profit
is constant between iterations 77 and 87, but both revenue and cost have slightly
negative slopes.

Each tree in the backhaul forest has an average depth of 2.49± 0.50. Each node
has an average of 1.381±0.76 incoming neighbors which shows that the fan-in limit
is rarely reached. Indeed, the average of the maximum fan-in is 3.73 ± 0.64, and
for some instances, no pole has more than two incoming neighbors. On average,
48.88± 14.32% of the used poles have only Wi-Fi, 19.51± 15.42% have only LTE,
and 9.22± 5.98% have both technologies. In 22.38± 6.93% of the used poles, only
retransmitters are installed. In only 0.34±0.51% of used poles, can one find a small
cell without a retransmitter. Such poles have no neighbors and are linked directly
to a FAP or macrocell using fiber.

With respect to traffic, Wi-Fi was responsible for an average of 77.28±16.50% of
the total covered access traffic while LTE served only 17.14± 12.59% of the traffic.
The macrocells served only 4.02 ± 6.70% of the traffic. Wi-Fi has shown itself as
an important resource to serve the demand due to it large capacity and low cost

BRKGA FOR WIRELESS BACKHAUL NETWORK DESIGN 35

when compared to LTE and HSPA equipment. The backhaul networks were able
to serve, on average, 55.78± 16.82% of total demand.

For the 3-year scenario, the deployment cost reached an average of 5.46± 1.22%
of the total cost and the pole annual maintenance was about 21.86 ± 4.88%. The
average proportional cost of the equipment was the following: Wi-Fi 0.43± 0.13%;
LTE 1.26 ± 0.86%; retransmitter 2.78 ± 0.62%. The cost for fiber trenching was
57.00± 13.22% and represents the most expensive component of the network. The
leased traffic was about 1.87±2.60%. However, even with a high cost infrastructure,
these backhaul networks can potentially generate a profit margin of 213.54±88.32%.

In Figure 5, we show an example which is a small portion of a given region where
a backhaul network is to be built. This region has three macrocells represented
by small antenna figures. Each light green square represents a set of demand
points in a specific block. The average number of demand points is 30 per block,
but can reach hundreds of residential and commercial buildings. The dark red
squares represent the VRAD/FAPs. The very small dark blue squares represent
the utility poles. Figure 6 shows the equipment deployment and the coverage radii.
The symbols with small equipment and two antennas represent Wi-Fi equipment
while the blue stars represent LTE equipment. The poles with only retransmitters
(backhaul equipment) are represented by a parabolic antenna. The brown and blue
circles are, respectively, the Wi-Fi and LTE access radii. One can note that some
blocks are not served. In particular, some blocks in the upper right-hand side of the
figure are not covered. Figure 7 shows the backhaul network. The dashed purple
arrows are wireless links, the black solid arrows are fibered links, and the arrows
indicate the direction of hte root nodes.

9. Final considerations

In this paper, we proposed a new problem called the Wireless Backhaul Network
Design Problem (WBNDP) which resembles variants of the Steiner tree and the
facility location problems. The objective is to build a forest to collect and route
wireless traffic. Differing from other problems in the literature, WBNDP uses
routed traffic to compute the profit. This traffic is constrained to the network in-
frastructure with several real-world constraints. We proposed a biased random-key
genetic algorithm (BRKGA) to solve the WBNDP. Its decoder relies on build-
ing the forest in a bottom-up fashion. We also proposed a mixed integer linear
programming model to solve the WBNDP.

BRKGA presented solid results with little variation. It was able to overcome
the IBM ILOG CPLEX 12.6 using MIP (3), in several medium and large instances
of one-hour runs. For longer experiments, BRKGA excelled on large instances.
Such results enable BRKGA to be used as an important tool in the planning phase
of a wireless backhaul network where, usually fast iterations are required. How-
ever, BRKGA also showed itself valuable for longer optimizations, mainly on large
instances. The stable results produced by the BRKGA give network engineers a
better understanding of the characteristics of an optimal network and makes it
easier modify some assumptions if needed.

Acknowledgments

The authors wish to thank Byoung-Jo Kim for his help with the radio modeling
portions of this paper. Carlos E. Andrade is supported by São Paulo Research

36 C.E. ANDRADE ET AL.

Figure 5. Example of region.

Foundation (FAPESP, Brazil) grants 2010/05233-5 and 2012/08222-0. Flávio K.
Miyazawa is supported by National Council for Scientific and Technological Devel-
opment (CNPq, Brazil) grants 306860/2010-4 and 477692/2012-5.

References

Carlos E. Andrade, Flávio K. Miyazawa, and Mauricio G. C. Resende. Evolu-
tionary algorithm for the k-interconnected multi-depot multi-traveling salesmen
problem. In Proceedings of the 15th Annual Conference on Genetic and Evolu-
tionary Computation, GECCO’13, pages 463–470, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-1963-8. doi: 10.1145/2463372.2463434.

Carlos E. Andrade, Mauricio G. C. Resende, Howard J. Karloff, and Flávio K.
Miyazawa. Evolutionary algorithms for overlapping correlation clustering. In
Proceedings of the 16th Conference on Genetic and Evolutionary Computation,
GECCO’14, pages 405–412, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-
2662-9. doi: 10.1145/2576768.2598284.

Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: A prac-
tical and powerful approach to multiple testing. Journal of the Royal Statistical
Society. Series B (Methodological), 57(1):289–300, 1995. ISSN 00359246. URL
http://www.jstor.org/stable/2346101.

BRKGA FOR WIRELESS BACKHAUL NETWORK DESIGN 37

Figure 6. Example of coverage.

Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas Stützle. F-Race
and iterated F-Race: an overview. In Experimental methods for the analysis of
optimization algorithms, pages 311–336. Springer Berlin Heidelberg, 2010.

Suzana A. Canuto, Mauricio G. C. Resende, and Celso C. Ribeiro. Local search with
perturbations for the prize-collecting Steiner tree problem in graphs. Networks,
38(1):50–58, 2001. ISSN 1097-0037. doi: 10.1002/net.1023.

Cisco. VNI Mobile forecast highlights 2013–2018. Cisco website, 2014. URL http:

//www.cisco.com/assets/sol/sp/vni/forecast_highlights_mobile.
William J. Conover. Practical nonparametric statistics. John Wiley & Sons, 2nd

edition, 1980.
Alysson M. Costa, Jean-François Cordeau, and Gilbert Laporte. Fast heuristics for

the Steiner tree problem with revenues, budget and hop constraints. European
Journal of Operational Research, 190(1):68–78, 2008. ISSN 0377-2217. doi: 10.
1016/j.ejor.2007.06.012.

Alysson M. Costa, Jean-François Cordeau, and Gilbert Laporte. Models and
branch-and-cut algorithms for the Steiner tree problem with revenues, budget
and hop constraints. Networks, 53(2):141–159, 2009. ISSN 1097-0037. doi:
10.1002/net.20274.

Alexandre S. da Cunha, Abilio Lucena, Nelso Maculan, and Mauricio G .C. Re-
sende. A relax-and-cut algorithm for the prize-collecting Steiner problem in

38 C.E. ANDRADE ET AL.

Figure 7. Example of backhaul network.

graphs. Discrete Applied Mathematics, 157(6):1198–1217, 2009. doi: 10.1016/j.
dam.2008.02.014.

Geir Dahl, Luis Gouveia, and Cristina Requejo. On formulations and methods
for the hop-constrained minimum spanning tree problem. In Mauricio G. C.
Resende and Panos M. Pardalos, editors, Handbook of Optimization in Telecom-
munications, pages 493–515. Springer US, 2006. ISBN 978-0-387-30662-9. doi:
10.1007/978-0-387-30165-5\ 19.

Balázs Dezsõ, Alpár Jüttner, and Péter Kovács. LEMON - an open source C++
graph template library. Electronic Notes in Theoretical Computer Science, 264
(5):23–45, 2011. ISSN 1571-0661. doi: http://dx.doi.org/10.1016/j.entcs.2011.
06.003.

Michael P. Fay and Michael A. Proschan. Wilcoxon-Mann-Whitney or t-test? On
assumptions for hypothesis tests and multiple interpretations of decision rules.
Statistics Surveys, 4:1–39, 2010.

Zhang-Hua Fu and Jin-Kao Hao. Breakout local search for the Steiner tree problem
with revenue, budget and hop constraints. European Journal of Operational
Research, 232(1):209–220, 2014. ISSN 0377-2217. doi: 10.1016/j.ejor.2013.06.048.

M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the
theory of NP-completeness. Freeman, San Francisco, 1979.

BRKGA FOR WIRELESS BACKHAUL NETWORK DESIGN 39

Michel X. Goemans and David P. Williamson. A general approximation technique
for constrained forest problems. SIAM Journal on Computing, 24(2):296–317,
1995. doi: 10.1137/S0097539793242618.

Michel X. Goemans and David P. Williamson. The primal dual method for ap-
proximation algorithms and its application to network design problems. In
D. Hochbaum, editor, Approximation Algorithms for NP-Hard Problems, pages
144–191. P.W.S. Publishing Co., Boston, MA, USA, 1996.

Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum-
flow problem. Journal of ACM, 35(4):921–940, Oct 1988. ISSN 0004-5411. doi:
10.1145/48014.61051.

José F. Gonçalves and Mauricio G. C. Resende. Biased random-key genetic algo-
rithms for combinatorial optimization. Journal of Heuristics, 17:487–525, 2011a.
ISSN 1381-1231. doi: 10.1007/s10732-010-9143-1.

José F. Gonçalves and Mauricio G. C. Resende. A parallel multi-population genetic
algorithm for a constrained two-dimensional orthogonal packing problem. Journal
of Combinatorial Optimization, 22:180–201, 2011b.

Luis Gouveia. Using the Miller-Tucker-Zemlin constraints to formulate a minimal
spanning tree problem with hop constraints. Computers & Operations Research,
22(9):959–970, 1995. ISSN 0305-0548. doi: 10.1016/0305-0548(94)00074-I.

Luis Gouveia, Ana Paias, and Dushyant Sharma. Restricted dynamic program-
ming based neighborhoods for the hop-constrained minimum spanning tree
problem. Journal of Heuristics, 17(1):23–37, 2011a. ISSN 1381-1231. doi:
10.1007/s10732-009-9123-5.

Luis Gouveia, Luidi Simonetti, and Eduardo Uchoa. Modeling hop-constrained and
diameter-constrained minimum spanning tree problems as Steiner tree problems
over layered graphs. Mathematical Programming, 128(1-2):123–148, 2011b. ISSN
0025-5610. doi: 10.1007/s10107-009-0297-2.

David S. Johnson, M. Minkoff, and S. Philips. The prize collecting tree problem:
theory and practice. In Proceedings of the 11th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 790–769, Baltimore, Maryland, USA, 1999.

David R. Karger and Maria Minkoff. Building Steiner trees with incomplete global
knowledge. In Proceedings of 41st Annual Symposium on Foundations of Com-
puter Science, FOCS’00, pages 613–623. IEEE Computer Society, 2000. ISBN
0-7695-0850-2. doi: 10.1109/SFCS.2000.892329.

Gunnar W. Klau, Ivana Ljubić, Andreas Moser, Petra Mutzel, Philipp Neuner,
Ulrich Pferschy, Günther Raidl, and René Weiskircher. Combining a memetic
algorithm with integer programming to solve the prize-collecting Steiner tree
problem. In Kalyanmoy Deb, editor, Genetic and Evolutionary Computation -
GECCO 2004, volume 3102 of Lecture Notes in Computer Science, pages 1304–
1315. Springer Berlin Heidelberg, 2004. ISBN 978-3-540-22344-3. doi: 10.1007/
978-3-540-24854-5\ 125.

Safa Bhar Layeb, Ines Hajri, and Mohamed Haouari. Solving the Steiner tree prob-
lem with revenues, budget and hop constraints to optimality. In 5th International
Conference on Modeling, Simulation and Applied Optimization (ICMSAO), pages
1–4, Hammamet, Algeria, 2013. doi: 10.1109/ICMSAO.2013.6552674.

Ivana Ljubić and Stefan Gollowitzer. Layered graph approaches to the hop con-
strained connected facility location problem. INFORMS Journal on Computing,
25(2):256–270, 2013. doi: 10.1287/ijoc.1120.0500.

40 C.E. ANDRADE ET AL.

Ivana Ljubić, René Weiskircher, Ulrich Pferschy, Gunnar W. Klau, Petra Mutzel,
and Matteo Fischetti. An algorithmic framework for the exact solution of the
prize-collecting Steiner tree problem. Mathematical Programming, 105(2-3):427–
449, 2006. ISSN 0025-5610. doi: 10.1007/s10107-005-0660-x.

Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Thomas Stützle, and Mauro Bi-
rattari. The irace package, iterated race for automatic algorithm configu-
ration. Technical Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de
Bruxelles, Belgium, 2011. URL http://iridia.ulb.ac.be/IridiaTrSeries/

IridiaTr2011-004.pdf.
Abilio Lucena and Mauricio G. C. Resende. Strong lower bounds for the prize

collecting Steiner problem in graphs. Discrete Applied Mathematics, 141(1-3):
277–294, 2004. ISSN 0166-218X. doi: 10.1016/S0166-218X(03)00380-9.

Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Trans. Model.
Comput. Simul., 8:3–30, 1998. ISSN 1049-3301. doi: 10.1145/272991.272995.

James O’Toole. Mobile apps overtake PC internet usage in U.S. CNN Money, Febru-
ary 28, 2014. URL http://money.cnn.com/2014/02/28/technology/mobile/

mobile-apps-internet.
Frank Rayal. LTE peak capacity explained: how to calculate it? Per-

sonal Blog, June 27, 2011. URL http://frankrayal.com/2011/06/27/

lte-peak-capacity.
Stefan Voß. Steiner tree problems in telecommunications. In Mauricio G. C. Re-

sende and Panos M. Pardalos, editors, Handbook of Optimization in Telecom-
munications, pages 459–492. Springer US, 2006. ISBN 978-0-387-30662-9. doi:
10.1007/978-0-387-30165-5\ 18.

D. Whitley, S. Rana, and R. B. Heckendorn. The island model genetic algorithm:
On separability, population size and convergence. Journal of Computing and
Information Technology, 7:33–47, 1998.

BRKGA FOR WIRELESS BACKHAUL NETWORK DESIGN 41

AppendixA. Instance details

Table A.1. Characteristics of the instances. The areas were cal-
culated from the convex hull considering all locations and their
geodesic characteristics.

Class Name Poles VRADs Macros Blocks Demand (Mbps) Area (km2)

re01 454 17 7 2507 5270.32 61.88
re02 484 15 1 2739 5762.16 7.61
re03 630 7 3 293 594.66 77.40
re04 667 104 0 5064 10653.00 5.75
re05 670 3 1 494 990.04 134.95
re06 673 244 15 5130 10822.60 17.91
re07 687 1 28 4139 8724.86 6.55
re08 922 41 7 11465 24162.70 16.39
re09 969 142 29 4694 9805.00 20.95

S
m

a
ll

re10 1018 48 5 2544 5321.20 9.77

re11 2045 157 28 25288 53110.20 26.62
re12 2113 53 9 6678 13993.10 252.26
re13 2254 139 9 13472 28260.70 24.39
re14 2288 84 22 28202 59364.20 58.21
re15 2305 49 8 12519 26320.90 62.44
re16 2327 93 8 18550 39036.60 8.69
re17 2345 43 10 13067 27434.90 23.06
re18 2347 123 24 15007 31411.00 233.10
re19 2363 86 6 17646 37125.40 4.82

M
e
d
iu

m

re20 2423 27 10 22630 47422.30 27.78

re21 5153 106 11 20053 42069.30 128.04
re22 5228 260 16 24730 51805.40 50.29
re23 5266 230 20 19356 40472.90 63.64
re24 5423 163 10 20411 42844.10 23.73
re25 5544 206 16 24555 51546.70 46.40
re26 6562 297 45 35376 74382.30 134.03
re27 6773 264 23 24714 51866.90 55.65
re28 7606 272 23 23759 49652.50 147.14
re29 7660 233 17 26948 56437.60 268.09

L
a
rg

e

re30 8740 390 30 35754 74933.50 411.71

42 C.E. ANDRADE ET AL.

AppendixB. Experimental results

Table B.1. Instance characteristics after preprocessing (re-
stricted scenario). The first two columns represents the class and
instance names. The next three columns represent, respectively,
the original number of poles, the number of poles after the pre-
processing, and the reduction percentage. The next three columns
represent the same as the last, but with respect to the demand
blocks. The three last columns show the graph characteristics, re-
spectively, number of vertices, number of arcs, and graph density
given by 2|A|/(|V | · (|V | − 1)).

Class Name
Poles Blocks Graph

Orig. Prep. % Red. Orig. Prep. % Red. Vert. Arcs Density

re01 454 417 8.15 2507 60 97.41 1356 9949 0.0108
re02 484 392 19.01 2739 90 96.68 1287 11083 0.0134
re03 630 296 53.02 293 11 92.15 929 10498 0.0244
re04 667 656 1.65 5064 91 97.35 2208 18275 0.0075
re05 670 217 67.61 494 51 88.26 717 6917 0.0269
re06 673 512 23.92 5130 92 98.05 1927 11525 0.0062
re07 687 659 4.08 4139 68 97.92 2150 21217 0.0092
re08 922 828 10.20 11465 262 97.59 2824 30949 0.0078
re09 969 960 0.93 4694 228 94.95 3348 38649 0.0069

S
m
a
ll

re10 1018 618 39.29 2544 66 97.05 1994 21117 0.0106

re11 2045 2033 0.59 25288 922 96.29 7279 103755 0.0039
re12 2113 1465 30.67 6678 216 96.57 4706 40176 0.0036
re13 2254 2150 4.61 13472 539 95.90 7171 82290 0.0032
re14 2288 2254 1.49 28202 799 97.05 7746 99077 0.0033
re15 2305 1665 27.77 12519 406 96.67 5487 54049 0.0036
re16 2327 2273 2.32 18550 546 97.01 7493 98855 0.0035
re17 2345 2131 9.13 13067 501 96.09 6979 73646 0.0030
re18 2347 1998 14.87 15007 437 96.91 6654 53547 0.0024
re19 2363 2241 5.16 17646 502 97.08 7344 84962 0.0032

M
e
d
iu

m

re20 2423 2313 4.54 22630 1031 95.38 8044 115970 0.0036

re21 5153 4671 9.35 20053 784 95.95 14966 211363 0.0019
re22 5228 5170 1.11 24730 1093 95.26 16991 249935 0.0017
re23 5266 5106 3.04 19356 1018 94.62 16651 205176 0.0015
re24 5423 5350 1.35 20411 771 96.13 17034 224754 0.0015
re25 5544 5416 2.31 24555 900 96.21 17434 286106 0.0019
re26 6562 5174 21.15 35376 1140 96.70 17123 126525 0.0004
re27 6773 6685 1.30 24714 956 96.05 21365 314229 0.0014
re28 7606 7238 4.84 23759 1195 94.62 23335 307691 0.0011
re29 7660 7127 6.96 26948 1240 95.21 22958 300128 0.0011

L
a
rg

e

re30 8740 7903 9.58 35754 1426 95.81 25690 253804 0.0008

Average 13.00 95.96 0.0057

BRKGA FOR WIRELESS BACKHAUL NETWORK DESIGN 43

Table B.2. Instance characteristics after preprocessing (unre-
stricted scenario). The description is the same of Table B.1.

Class Name
Poles Blocks Graph

Orig. Prep. % Red. Orig. Prep. % Red. Vert. Arcs Density

re01 454 436 3.96 2507 60 97.41 1413 10224 0.0102
re02 484 443 8.47 2739 91 96.64 1441 11743 0.0113
re03 630 598 5.08 293 28 85.67 1854 20619 0.0120
re04 667 666 0.15 5064 91 97.35 2238 18351 0.0073
re05 670 406 39.40 494 56 87.04 1290 10517 0.0126
re06 673 653 2.97 5130 92 98.05 2350 14827 0.0054
re07 687 682 0.73 4139 68 97.92 2219 21567 0.0088
re08 922 907 1.63 11465 264 97.58 3063 32427 0.0069
re09 969 962 0.72 4694 228 94.95 3354 38665 0.0069

S
m
a
ll

re10 1018 993 2.46 2544 101 95.68 3154 32914 0.0066

re11 2045 2041 0.20 25288 922 96.29 7303 103943 0.0039
re12 2113 1724 18.41 6678 226 96.41 5494 44860 0.0030
re13 2254 2209 2.00 13472 539 95.90 7348 83174 0.0031
re14 2288 2282 0.26 28202 799 97.05 7830 99499 0.0032
re15 2305 2158 6.38 12519 412 96.61 6973 63240 0.0026
re16 2327 2319 0.34 18550 546 97.01 7631 100071 0.0034
re17 2345 2328 0.72 13067 501 96.09 7570 78601 0.0027
re18 2347 2177 7.24 15007 438 96.91 7192 56369 0.0022
re19 2363 2297 2.79 17646 502 97.08 7512 85752 0.0030

M
e
d
iu

m

re20 2423 2405 0.74 22630 1031 95.38 8320 118320 0.0034

re21 5153 5131 0.43 20053 804 95.85 16366 223525 0.0017
re22 5228 5204 0.46 24730 1093 95.26 17093 250388 0.0017
re23 5266 5213 1.01 19356 1018 94.62 16972 207085 0.0014
re24 5423 5398 0.46 20411 771 96.13 17178 225471 0.0015
re25 5544 5507 0.67 24555 901 96.21 17708 287775 0.0018
re26 6562 6078 7.38 35376 1141 96.70 19836 143535 0.0007
re27 6773 6736 0.55 24714 956 96.05 21518 315330 0.0014
re28 7606 7554 0.68 23759 1195 94.62 24283 312417 0.0011
re29 7660 7538 1.59 26948 1240 95.21 24191 305839 0.0010

L
a
rg

e

re30 8740 8445 3.38 35754 1430 95.79 27322 261222 0.0007

Average 4.04 95.65 0.0043

(C.E. Andrade) Institute of Computing, University of Campinas, Avenida Albert Ein-
stein 1251, Campinas, SP 13083-852 Brazil.

E-mail address: andrade@ic.unicamp.br

(M.G.C. Resende) Network Evolution Research Department, AT&T Labs Research,

200 S. Laurel Avenue, Middletown, NJ 07748 USA.

E-mail address: mgcr@research.att.com

(W. Zhang) Network Evolution Research Department, AT&T Labs Research, 200 S.

Laurel Avenue, Middletown, NJ 07748 USA.
E-mail address: maxzhang@research.att.com

(R.K. Sinha) Network Evolution Research Department, AT&T Labs Research, 200 S.

Laurel Avenue, Middletown, NJ 07748 USA.
E-mail address: sinha@research.att.com

(K.C. Reichman) Network Evolution Research Department, AT&T Labs Research, 200
S. Laurel Avenue, Middletown, NJ 07748 USA.

E-mail address: kcr@research.att.com

(R.D. Doverspike) Network Evolution Research Department, AT&T Labs Research,

200 S. Laurel Avenue, Middletown, NJ 07748 USA.
E-mail address: rdd@research.att.com

(F.K. Miyazawa) Institute of Computing, University of Campinas, Avenida Albert Ein-

stein 1251, Campinas, SP 13083-852 Brazil.
E-mail address: fkm@ic.unicamp.br

44 C.E. ANDRADE ET AL.

Table B.3. Best results for instances in restricted scenarios (H =
2 and δ+

bh = 5) considering at most five hours of running time.
Column “Best” is in monetary units. Column “Value” is the pro-
portion of the best value and the star (?) indicates that algorithm
reached the best value.. The time is in seconds.

Class Name Best
BRKGA MIP

Value Time Value Time

re01 223318.91 96.20 426 ? 11535
re02 276283.54 98.40 206 ? 18000
re03 777.70 ? 2 ? 718
re04 503390.32 99.03 811 ? 18001
re05 34260.77 98.20 109 ? 11767
re06 312983.30 94.65 818 ? 9776
re07 408958.12 94.72 1181 ? 18001
re08 1120700.40 93.38 949 ? 18003
re09 969767.30 94.82 2196 ? 18002

S
m

a
ll

re10 208447.26 ? 459 97.64 18001

re11 3337910.41 95.91 17932 ? 18013
re12 763482.03 95.47 2671 ? 18004
re13 2274004.01 98.47 8643 ? 18008
re14 3595743.00 97.03 17729 ? 18016
re15 1003845.55 93.40 2645 ? 18006
re16 2918574.32 96.82 13198 ? 18011
re17 1665169.72 92.51 14950 ? 18008
re18 1012156.38 94.59 5276 ? 18008
re19 3127893.63 98.85 17196 ? 18011

M
ed

iu
m

re20 1947590.10 97.80 17413 ? 18013

re21 2446582.47 ? 17890 53.37 18029
re22 4672597.84 ? 17968 53.58 18037
re23 3306754.86 ? 17841 94.13 18031
re24 3468301.68 ? 17930 44.67 18036
re25 3523112.09 ? 17947 44.46 18048
re26 3240689.63 85.54 17895 ? 18046
re27 4105130.94 ? 17848 47.89 18054
re28 3333164.09 ? 17921 42.66 18058
re29 2870427.50 ? 17952 31.45 18069

L
a
rg

e

re30 3494309.59 ? 17934 32.96 18077

BRKGA FOR WIRELESS BACKHAUL NETWORK DESIGN 45

Table B.4. Best results for instances in unrestricted scenarios
(H = ∞ and δ+

bh = ∞). The shown results are from BRKGA since
MIP could not generate results for this scenarios. Column “Value”
is in monetary units and column “Time” is in seconds.

Class Name Value Time

re01 169616.48 133
re02 223468.57 1069
re03 5308.44 298
re04 435721.68 618
re05 30915.48 301
re06 213459.59 1153
re07 319970.34 2110
re08 754766.38 3465
re09 621946.84 3545

S
m

a
ll

re10 165799.06 661

re11 920374.03 3588
re12 418432.29 2041
re13 888349.09 3591
re14 948616.36 3585
re15 471514.34 3564
re16 981844.03 3588
re17 601561.67 3592
re18 498607.85 3591
re19 1020244.96 3589

M
ed

iu
m

re20 574179.03 3585

re21 563981.69 3571
re22 793855.12 3564
re23 767027.56 3572
re24 785345.52 3568
re25 800893.55 3561
re26 627323.55 3540
re27 832122.19 3552
re28 629435.90 3546
re29 495815.35 3538

L
a
rg

e

re30 594627.10 3515

