
A BIASED RANDOM-KEY GENETIC ALGORITHM FOR A 2DAND 3D BIN PACKING PROBLEMJOSÉ FERNANDO GONÇALVES AND MAURICIO G.C. RESENDEAbstrat. We present a novel multi-population biased random-key genetialgorithm (BRKGA) for the 2D and 3D bin paking problem. The approahuses a maximal-spae representation to manage the free spaes in the bins.The proposed algorithm uses a deoder based on a novel plaement proe-dure within a multi-population geneti algorithm based on random keys. TheBRKGA is used to evolve the order in whih the boxes are paked into thebins and the parameters used by the plaement proedure. Two heuristi pro-edures are used to determine the bin and the free maximal spae where eahbox is plaed. A novel �tness funtion that improves signi�antly the qualityof the solutions produed is also developed. The new approah is extensivelytested on 858 problem instanes from the literature. The omputational exper-iments demonstrate not only that the approah performs extremely well, butthat it obtains the best overall results when ompared with other approahespublished in the literature. It redued the total number of bins used from 9803to 9772 for the 3D instanes and from 7241 to 7234 for the 2D instanes.1. IntrodutionThe three-dimensional bin paking problem (3D-BPP) onsists in paking, withno overlap, a set of three-dimensional retangular shaped boxes (items) into theminimum number of three-dimensional retangular shaped bins (ontainers). Allthe bins have idential known dimensions (D,W,H) and eah box i has dimensions
(di, wi, hi) for i = 1, . . . , n. Without loss of generality one an assume that allthe input data are positive integers and that di ≤ D, hi ≤ H and di ≤ D for
i = 1, . . . , n. It is also assumed that the boxes an be rotated. Figure 1 showsan example of a bin paking problem with two bins and more than two hundredboxes. The two-dimensional bin paking problem (2B-BPP) addresses the problemfor two-dimensional bins (W,H) and boxes (wi, hi) and an be treated as a speialase of 3D-BPP when di = D for i = 1, . . . , n. Aording to the typology proposedby Wäsher et al. (2007), bin paking problems are lassi�ed as 3D-SBSBPP (3D-Single Bin-Size Bin Paking Problems). The problem is strongly NP-hard as it gen-eralizes the strongly NP-hard one-dimensional bin paking problem (Martello et al.,2000).Three-dimensional paking problems have numerous relevant industrial applia-tions suh as loading argo into vehiles, ontainers or pallets, or in pakage design.Date: Marh 30, 2012.Key words and phrases. Bin paking, heuristi, geneti algorithm, biased random-key genetialgorithm, three-dimensional, random keys.AT&T Labs Researh Tehnial Report. Researh supported by Funda���¿o para a Ci�ªniae Tenologia (FCT) projet PTDC/EGE-GES/117692/2010.1



2 J. F. GONÇALVES AND M.G.C. RESENDEThe 3D-BPP an also arise as a subproblem of other omplex problems not only inpaking and utting but also in some sheduling problems.An exat method for the 3D-BPP that uses a two-level branh & bound proe-dure was proposed by Martello et al. (2000). Their proposal initially only solvedrobot-pakable problems (den Boef et al., 2005), but it was subsequently modi�edto solve the general problem (Martello et al., 2007). Fekete and Shepers (1997)and Fekete and Shepers (2004) de�ne an impliit representation of the pakingby means of Interval Graphs (IGs), the Paking Class (PC) representation. Theauthors onsider the relative position of the boxes in a feasible paking and, fromthe projetion of the items on eah orthogonal axis, they de�ne a graph desribingthe overlappings of the items in the ontainer.A new lass of lower bounds was introdued by Fekete and Shepers (1997). Theauthors extend the use of dual feasible funtions, �rst introdued by Johnson (1973),to two- and three-dimensional paking problems, inluding 3D-SBSBPP. Boshetti(2004) proposed a lower bound that dominates previous ones. These bounds makeuse of new dual feasible funtions. Boshetti and Mingozzi (2003a;b) propose newlower bounds for the two-dimensional ase.Several onstrutive and meta-heuristi algorithms have been designed for solv-ing large bin paking problems. Faroe et al. (2003) proposed a guided loal searh(GLS) heuristi for 3D-BPP and 2D-BPP. This heuristi is based on the iterativesolution of onstraint satisfation problems. Starting with an upper bound on thenumber of bins obtained by a greedy heuristi, the algorithm iteratively dereasesthe number of bins, eah time searhing for a feasible paking of the boxes us-ing the GLS method. Lodi et al. (1999; 2002) developed tabu searh algorithmsbased on new onstrutive proedures for the two- and three-dimensional ases andLodi et al. (2004) propose a uni�ed tabu searh ode for general multi-dimensionalbin paking problems. More reently, Craini et al. (2009)developed a two-leveltabu searh algorithm, in whih the �rst level aims to redue the number of binsand the seond optimizes the paking of the bins, using the representation proposedby Fekete and Shepers (2004) and Fekete et al. (2007).For the two-dimensional bin paking problem (2D-BPP), Boshetti and Mingozzi(2003b) developed an e�etive onstrutive heuristi that assigns a sore to eahbox, onsiders the boxes aording to dereasing values of the orresponding sores,updates the sores using a spei�ed riterion, and iterates until either an op-timal solution is found or a maximum number of iterations has been reahed.Monai and Toth (2006) designed a set-overing-based heuristi approah in whihin a �rst phase a large number of olumns are generated by heuristi proedures andby the exat algorithm of Martello and Vigo (1998) with a time-limit. In the seondphase these olumns are used for solving a set-overing problem whih results inthe solution of the original bin paking problem. Parreño et al. (2010) propose anew hybrid GRASP/VND algorithm for solving the three-dimensional bin pakingproblems whih an also be diretly applied to the two-dimensional ase. The on-strutive phase is based on a maximal-spae heuristi developed for the ontainerloading problem. In the improvement phase, several new moves are designed andombined in a VND struture.
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Figure 1. Example of a Bin Paking Problem with two bins.3D-SBSBPP is NP-hard in the strong sense. Therefore, when large instanesmust be saolved, heuristis are the methods of hoie. In this paper we presenta novel multi-population biased random-key geneti algorithm (BRKGA) for the2D-BPP and the 3D-BPP. The approah uses a maximal-spae representation tomanage the free spaes in the bins. The proposed algorithm uses a novel plaementproedure as a omponent of the deoder within a multi-population geneti algo-rithm based on random keys. The BRKGA is used to evolve the order in whih theboxes are paked into the bins and the parameters used by the plaement proedure.The remainder of the paper is organized as follows. In Setion 2 we introduethe new approah. We desribe the BRKGA, the new plaement strategy, thenew �tness funtion, and the paralell implementation. In Setion 3, we report onomputational experiments, and in Setion 4 make onluding remarks.2. Biased random-key geneti algorithmWe begin this setion with an overview of the proposed solution proess. Thisis followed by a disussion of the biased random-key geneti algorithm, inludingdetailed desriptions of the solution enoding and deoding, evolutionary proess,�tness funtion, and parallel implementation.2.1. Overview. The new approah is based on a onstrutive heuristi algorithmwhih plaes the boxes, one at a time, in the bins. A new bin is opened whenever abox does not �t in at least one of the bins that are already open. The managementof the feasible plaement positions is based on a list of empty maximal-spaes asdesribed in Lai and Chan (1997). A 2D or 3D empty spae is maximal if itis not ontained in any other spae in the bin. Eah time a box is plaed inan empty maximal-spae, new empty maximal-spaes are generated. The newapproah proposed in this paper ombines a multi-population biased random-keygeneti algorithm, a new plaement strategy, and a novel �tness funtion.The role of the geneti algorithm is to evolve the enoded solutions, or hromo-somes, whih represent the box paking sequene (BPS ), the vetor of plaementheuristis (VPH ) and the vetor of box orientations (VBO) used for paking theboxes into the bins. For eah hromosome, the following phases are applied todeode the hromosome:



4 J. F. GONÇALVES AND M.G.C. RESENDE(1) Deoding of the box paking sequene: This �rst phase deodes part of thehromosome into the BPS. i.e. the sequene in whih the boxes are pakedinto the bins.(2) Deoding of plaement heuristis: The seond phase deodes part of thehromosome into the vetor of plaement heuristis (V PH) to be used bythe plaement proedure.(3) Deoding of box orientations : The third phase deodes part of the hromo-some into the vetor of box orientations (VBO) to be used by the plaementproedure.(4) Plaement strategy : The fourth phase makes use of BPS, VPH and VBO,de�ned in phases 1, 2, and 3, and onstruts a paking of the boxes intothe bins.(5) Fitness evaluation: The �nal phase omputes the �tness of the solution (ormeasure of quality of the bin paking). For this phase we developed a novelmeasure of �tness whih improves the quality of the solutions signi�antly.Figure 2 illustrates the sequene of steps applied to eah hromosome generated bythe BRKGA.
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Figure 2. Arhiteture of the algorithm.The remainder of this setion desribes the geneti algorithm, the deoding pro-edure, and the plaement strategy in detail.2.2. Biased random-key geneti algorithm. Geneti algorithms with randomkeys, or random-key geneti algorithms (RKGA), for solving sequening problems



BRKGA FOR 2D/3D BIN PACKING 5were introdued in Bean (1994). In a RKGA, hromosomes are represented asvetors of randomly generated real numbers in the interval [0, 1]. The deoder,a deterministi algorithm, takes as input a hromosome and assoiates with it asolution of the ombinatorial optimization problem for whih an objetive value or�tness an be omputed.A RKGA evolves a population of random-key vetors over a number of gener-ations (iterations). The initial population is made up of p vetors of r randomkeys. Eah omponent of the solution vetor, or random key, is generated indepen-dently at random in the real interval [0, 1]. After the �tness of eah individual isomputed by the deoder in generation g, the population is partitioned into twogroups of individuals: a small group of pe elite individuals, i.e. those with the best�tness values, and the remaining set of p − pe non-elite individuals. To evolve apopulation g a new generation of individuals is produed. All elite individual ofthe population of generation g are opied without modi�ation to the populationof generation g + 1. RKGAs implement mutation by introduing mutants intothe population. A mutant is a vetor of random keys generated in the same waythat an element of the initial population is generated. At eah generation, a smallnumber pm of mutants is introdued into the population. With pe+pm individualsaounted for in the population g + 1, p − pe − pm additional individuals need tobe generated to omplete the p individuals that make up population g + 1. This isdone by produing p− pe− pm o�spring solutions through the proess of mating orrossover.A biased random-key geneti algorithm, or BRKGA (Gonçalves and Resende,2011b), di�ers from a RKGA in the way parents are seleted for mating. Whilein the RKGA of Bean (1994) both parents are seleted at random from the entireurrent population, in a BRKGA eah element is generated ombining a parentseleted at random from the elite partition in the urrent population and one fromthe non-elite partition. Repetition in the seletion of a mate is allowed and thereforean individual an produe more than one o�spring in the same generation. As inRKGAs, parameterized uniform rossover (Spears and Dejong, 1991) is used toimplement mating in BRKGAs. Let ρe be the probability that an o�spring inheritsthe vetor omponent of its elite parent. Reall that r denotes the number ofomponents in the solution vetor of an individual. For i = 1, . . . , r, the i-thomponent c(i) of the o�spring vetor c takes on the value of the i-th omponent
e(i) of the elite parent e with probability ρe and the value of the i-th omponent
ē(i) of the non-elite parent ē with probability 1− ρe.When the next population is omplete, i.e. when it has p individuals, �tnessvalues are omputed for all of the newly reated random-key vetors and the pop-ulation is partitioned into elite and non-elite individuals to start a new generation.A BRKGA searhes the solution spae of the ombinatorial optimization problemindiretly by searhing the ontinuous r-dimensional hyperube, using the deoderto map solutions in the hyperube to solutions in the solution spae of the ombi-natorial optimization problem where the �tness is evaluated.To speify a biased random-key geneti algorithm, we simply need to speifyhow solutions are enoded and deoded and how their orresponding �tness val-ues are omputed. We speify our algorithm next by �rst showing how the binpaking solutions are enoded and then deoded and how their �tness evaluation isomputed.



6 J. F. GONÇALVES AND M.G.C. RESENDE2.2.1. Chromosome representation and deoding . A hromosome enodes a solutionto the problem as a vetor of random keys. In a diret representation, a hromosomerepresents a solution of the original problem, and is alled genotype, while in anindiret representation it does not, and speial proedures are needed to obtain fromit a solution alled a phenotype. In the present ontext, the diret representationof paking patterns as hromosomes is too ompliated to enode and manipulate.Instead, solutions will be represented indiretly by parameters that are later usedby a deoding proedure to obtain a solution. To obtain the solution (phenotype)we use the deoding proedures desribed in Setion 2.3.3.Eah solution hromosome is made of 3n genes as depited in Figure 3. The �rst
n genes are used to obtain the Box Paking Sequene, genes n+1 to 2n are used toobtain the Vetor of Plaement Heuristis, and genes 2n+1 to 3n are used to obtainthe Vetor of Box Orientations. The plaement proedure, desribed in Setion2.3.3, makes use of BPS, VPH, and VBO to onstrut a solution orresponding tothe hromosome.

Box Packing Sequence

Chromosome = ( gene1 , … , genen ,  genen+1 , … , gene2n ,  gene2n+1 , … , gene3n )

Box Orientation

Placement HeuristicFigure 3. Solution enoding.The deoding (mapping) of the �rst n genes of eah hromosome into a boxpaking sequene (BPS ) is aomplished by sorting in asending order of gene valuesthe orresponding boxes. Figure 4 shows an example of the deoding proess forthe BPS. In this example there are 8 boxes. The sorting of the genes in asendingorder of their value produes the following BPS = (5, 8, 3, 1, 4, 2, 6, 7).
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Box Packing Sequence (BPS)Figure 4. Deoding of the Box Paking Sequene.In the plaement proedure presented in Setion 2.3.2 we make use of two plae-ment heuristis; Bak-Bottom-Left (BBL) and Bak-Left-Bottom (BLB). The de-oding of the vetor of plaement heuristis (VPH ) is aomplished for i = 1, . . . , n,



BRKGA FOR 2D/3D BIN PACKING 7using the expression:
VPH i =







BBL if gene n+i ≤
1

2
,

BLB if gene n+i >
1

2
.The VPH is used by the plaement proedure to selet whih plaement heuristito apply on eah box.The deoding of the vetor of box orientations (VBO) is obtained for i = 1, . . . , n,by

VBO i = gene 2n+i.The VBO is used by the plaement proedure to determine what orientation willbe applied to eah box.2.2.2. Fitness funtion. The evolutionary proess requires a measure of solution�tness, or quality measure. The natural �tness funtion for this type of problem isthe number of bins (NB) used by a solution. However, sine di�erent solutions anhave the same NB value, this measure does not di�erentiate well the potential forimprovement of solutions having the same value of NB .To better di�erentiate the potential for improvement we developed a novel mea-sure of �tness whih we all adjusted number of bins (aNB). aNB ombines NBwith a measure (in the interval ]0, 1[ ) of the potential for improvement of the binpaking solution. The rationale for this new measure is that if we have two solu-tions that use the same number of bins, then the one having the least loaded binwill have more potential for improvement.Let LeastLoad be the load on the least loaded bin of a solution and let theapaity of the eah bin be BinCap = W ×H ×D for the 3D ase and BinCap =
W ×H for the 2D ase. The value of the adjusted number of bins is given by

aNB = NB +
LeastLoad

BinCap
.The omputational results in Setion 3 show that this novel measure of �tnessimproves the quality of the solutions in a signi�ant way.2.2.3. Multi-population strategy. Our BRKGA uses a multi-population strategy,where several populations are evolved independently in parallel. In this strategyall populations exhange good-quality hromosomes after a pre-determined numberof generations. When evaluating possible interhange strategies, we observed thatexhanging too many hromosomes, or exhanging them too frequently, often leadsto the disruption of the evolutionary proess. Therefore, we adopt a strategy that,after a pre-determined number of generations, inserts the overall two best hromo-somes (from the union of all populations) into all populations. In Setion 3 we showhow this hoie was determined empirially.2.3. Plaement strategy. In the next setions we desribe the main omponentsof the plaement strategy.



8 J. F. GONÇALVES AND M.G.C. RESENDE2.3.1. Maximal-spaes. While trying to plae a box in the bins we use a list S ofempty maximal-spaes (EMSs), i.e. largest empty parallelepiped spaes availablefor �lling with boxes. Maximal-spaes are represented by their verties with mini-mum and maximum oordinates ({xi, yi, zi} and {Xi, Yi, Zi}, respetively). Whensearhing for a plae to pak a box we need to onsider only the oordinates or-responding to the EMS verties with minimum oordinates (xi, yi, zi). To gener-ate and keep trak of the EMSs, we make use of the di�erene proess (DP) ofLai and Chan (1997). Figure 5 depits an example of the appliation of the DPproess. In the example we assume that we have one box to be paked in one bin(see Figure 5a). Initially, sine the bin is empty, the box is paked at the origin ofthe bin as shown in Figure 5b. To pak the next box, we �rst update the list S ofempty maximal-spaes. Figure 5 shows the three new EMSs generated by the DPproess. Every time a box is paked, we reapply the DP proess to update list Sbefore we pak the next box.
a) Box to be packed and initial maximal-space

b)  Box packed in the maximal-space c)  Newly generated maximal-spacesFigure 5. Example of di�erene proess (DP).After the list S has been updated by the DP one still needs to eliminate EMSswith in�nite thinness or those that are totally insribed by other EMSs. This pro-ess is the most time onsuming in the paking proess. To redue the omputationtime for this task we added the following rules to the di�erene proess:
• If the volume of a newly reated EMS is smaller than the volume of eahof the boxes remaining to be paked, do not add it to S (note that EMSswith in�nite thinness will automatially be removed by this step);
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• If the smallest dimension of a newly reated EMS is smaller than the small-est dimension of eah of the boxes remaining to be paked, do not add it to
S (note that this rule is very important for the elimination of EMSs whereno box �ts and that are not removed by the previous rule, sine they havea large volume).With the above rules we where able to redue, in most problem instanes, theomputational time by approximately 60%.2.3.2. Plaement heuristis. Reall from that {xi, yi, zi} denote the minimum oor-dinates of EMS i. Initially we onsidered only the Bak-Bottom-Left (BBL) proe-dure whih orders the EMSs in a bin in suh a way that EMS i < EMS j if xi < xj ,or if xi = xj and zi < zj, or if xi = xj , zi = zj , and yi < yj, and then hooses the�rst EMS in whih the box to be paked �ts (using any of the possible orientations).Figure 6 shows pseudo-ode for the BBL plaement heuristi. However, as observedby Liu and Teng (1999), we notied that some optimal solutions ould not be on-struted by the BBL plaement heuristi. To overome this weakness, we ombinethe BBL plaement heuristi with a Bak-Left-Bottom (BLB) plaement heuris-ti. This heuristi orders the EMSs in a bin in suh a way that EMS i < EMS jif xi < xj , or if xi = xj and yi < yj , or if xi = xj , yi = yj , and zi < zj, andthen hooses the �rst EMS in whih the box to be paked �ts (using any of thepossible orientations). In summary, our plaement strategy uses two plaementheuristis, the Bak-Bottom-Left and the Bak-Left-Bottom, to onstrut a pakingof the boxes. The vetor of plaement heuristis (VPH ), supplied by the genetialgorithm, indiates, for eah box to be paked, whether it should be plaed usingthe BBL or BLB heuristi.2.3.3. Plaement proedure. The plaement proedure follows a sequential proesswhih paks a box in a bin at eah stage. The order in whih the boxes are pakedis de�ned by the BPS evolved by the BRKGA.The proedure ombines the following elements: the vetors BPS, VPH , and

VBO de�ned by the BRKGA, the lists Sb of empty maximal spaes for every openbin b, and the BBL and BLB plaement heuristis. Eah stage is omprised of thefollowing six main steps:(1) Box seletion;(2) Plaement heuristi seletion;(3) Bin and empty maximal spae seletion;(4) Box orientation seletion;(5) Box paking;(6) State information update.The pseudo-ode of the plaement proedure is given in Figure 6. The box seletionat stage i selets for paking the box in the i-th position of BPS (lines 4 of thepseudo-ode). The plaement heuristi to be used is de�ned by the i-th positionof VPH (lines 5 of the pseudo-ode). The seletion of the bin and empty maximalspae searhes, in the open bins, for a maximal spae where the box BPS i �ts (usingthe plaing heuristi seleted and any of the possible box orientations). As soon asa bin is found the bin searh stops (�rst �t rule). If no bin is found a new bin isopen (lines 6 to 23 of the pseudo-ode). One a bin and a maximal spae is seletedthe box orientation seletion is arried out (lines 24 to 26 of the pseudo-ode). Thebox paking onsists in paking the box BPS i in the bin and the maximal seleted



10 J. F. GONÇALVES AND M.G.C. RESENDE(lines 27 of the pseudo-ode). The �nal step, state information update, onsists inupdating the list of empty maximal spaes, of the bin where the last box pakingourred using the DP proedure (lines 28 of the pseudo-ode).proedure BBL(BoxToPack , BIN )1 Let NEMS be the number of available EMSs in bin BIN ;2 Initialize X∗ ← D; Y ∗ ←W ; Z∗ ← H ; EMS ∗ ← 0;3 for i = 1, . . . , NEMS do4 Let x, y, z be the minimum x, y, z oordinates of EMS i;5 if BoxToPack �ts in EMS i of bin BIN then6 if x ≤ X∗ or
· (x = X∗ and z ≤ Z∗ ) or
· (x = X∗ and z = Z∗ and y ≤ Y ∗ ) then7 X∗ ← x, Z∗ ← z, Y ∗ ← y ;8 EMS ∗ = EMS i;9 end if10 end if11 end for12 return EMS ∗ // returns 0 if it was not possible
· to pak BoxToPack in bin BIN ;end BBLFigure 6. Pseudo-ode of the Bak-Bottom-Left (BBL) proedure.

2.4. Parallel implementation. Parallelization applies only to the task that per-forms the evaluation of the hromosome �tness sine it is the most time onsuming.Sine the tasks related with the other steps of the GA onsume very little timethey are not parallelized. This type of parallelization is easy to implement andin multi-ore CPUs allows for a large redution in omputational times (almosta linear speed-up with the number of ores). The parallel implementation of ourheuristi was done using the OpenMP Appliation Program Interfae (API) whihsupports multi-platform shared-memory parallel programming in C/C++.3. Numerial experimentsWe next report on results obtained on a set of experiments onduted to evaluatethe performane of the multi-population biased random-key geneti algorithm forthe bin paking problem (BRKGA-BPP) proposed in this paper.3.1. Benhmark algorithms. We ompare BRKGA-BPP with the six approaheslisted in Table 1. These approahes are the most e�etive in the literature to date.



BRKGA FOR 2D/3D BIN PACKING 11proedure PLACEMENT (BPS , VPH , VBO)// ** Initialization1 Let B be the set of open bins and NB the number of open bins;2 B ← {1}, NB ← 0;3 for i = 1, . . . , n do
· // ** Box seletion4 BoxToPack ← BPS i // selet the box in the ith position of BPS ;
· // ** Plaement Heuristi seletion5 PlaceHeur = VPH i;
· // ** Bin and Empty Maximal Spae seletion6 EMS ← 0, BinSelected ← 0;7 for k = 1, . . . ,NB do
· // try to pak box BoxToPack in a EMS of bin k using PlaceHeur ;8 if PlaceHeur = BBL then9 EMS ← BBL(BoxToPack , k);10 else if PlaceHeur = BLB then11 EMS ← BLB(BoxToPack , k);12 end if13 if EMS > 0 then // box is pakable in EMS of bin k;14 BinSelected ← k ;15 exit for // stop for yle, go to 18;16 end if17 end for18 if BinSelected = 0 then // open a new empty bin;19 BinSelected ← NB + 1;20 B ← B ∪ {BinSelected};21 NB ← NB + 1;22 EMS ← 1; // pak BoxToPack at the origin of the new empty bin;23 end if
· // ** Box Orientation seletion24 Let BOs be a vetor with all the possible pakable orientations
· of box BoxToPack in EMS of bin BinSelected ;25 Let nBOs be number of box orientations in vetor BOs ;26 Let BO∗ = BOs (⌈VBOBoxToPack × nBOs⌉) be the box orientation
· seleted to pak BoxtoPack in EMS of bin BinSelected ;
· // ** Box paking27 Pak BoxToPack at the origin of maximal spae EMS

· of bin BinSelected using orientation BO
∗;

· // ** State Information update28 Update the list of EMSs of bin BinSelected using
· the DP proedure of Lai and Chan (1997);29 end forend PLACEMENTFigure 7. Pseudo-ode for the PLACEMENT proedure.



12 J. F. GONÇALVES AND M.G.C. RESENDETable 1. E�ient approahes used for omparison.Approah Soure of approah Type of methodTS3 Lodi et al. (1999) and Lodi et al.(2002) Tabu Searh (2D/3D)HBP Boshetti and Mingozzi (2003b) Heuristi (2D)GLS Faroe et al. (2003) Guided Loal Searh (2D/3D)SCH Monai and Toth (2006) Set Covering Based Heuristi(2D)
TS

2
PACK Craini et al. (2009) Parallel Tabu Searh (3D)GVND Parreño et al. (2010) GRASP/VND (2D/3D)

3.2. Test problem instanes. A standard benhmark set of 320 problems gener-ated by Martello et al. (2000) was used for testing the 3D bin paking algorithm.The instane generator is available at http://www.diku.dk/~pisinger/odes.html.These instanes are organized into 8 lasses with 40 instanes eah, 10 instanes foreah value of n ∈ {50, 100, 150, 200}. For Classes 1�5, the bin size is W = H =
D = 100 and there are �ve types of items whih have wj , hj, and dj uniformlyrandom aording to the intervals presented in Table 2. For Class k (k = 1, . . . , 5),eah item is of type k is hosen with probability 60%, and the other four types withprobability 10% eah. Classes 6�8 are as follows:Class 6: bin size W = H = D = 10; wj , hj , dj ∈ [1, 10];Class 7: bin size W = H = D = 40; wj , hj , dj ∈ [1, 35];Class 8: bin size W = H = D = 100; wj , hj , dj ∈ [1, 100].Table 2. Type haraterization.Type 1: wj ∈

[

1, 1

2
W

], hj ∈
[

2

3
H, H

], dj ∈
[

2

3
D, D

];Type 2: wj ∈
[

2

3
W, 1

2
W

], hj ∈
[

1, 1

2
H
], dj ∈

[

2

3
D, D

];Type 3: wj ∈
[

2

3
W, 1

2
W

], hj ∈
[

2

3
H, H

], dj ∈
[

1, 1

2
D
];Type 4: wj ∈

[

1

2
W, W

], hj ∈
[

1

2
H, H

], dj ∈
[

1

2
D, D

];Type 5: wj ∈
[

1, 1

2
W

] , hj ∈
[

1, 1

2
H
], dj ∈

[

1, 1

2
D
].

For testing the 2D bin paking algorithm we used the following sets of instaneswhih were also used to evaluate the other benhmark algorithms by their authors.

http://www.diku.dk/~pisinger/codes.html
http://www.diku.dk/~pisinger/codes.html.


BRKGA FOR 2D/3D BIN PACKING 13Table 3. Datasets used for testing the 2D bin paking algorithm.Class Desriptionbwmv Inludes 500 instanes generated by Berkey and Wang (1987) and byMartello and Vigo (1998). These instanes are divided into 10 lasses whereeah lass omprises 50 instanes, 10 for eah value of
n ∈ {20, 40, 60, 80, 100}. All instanes, and the orresponding best knownsolution values, are available athttp://www.or.deis.unibo.it/researh_pages/ORinstanes/2BP.html .gut Proposed by Christo�des and Whitlok (1977). Available from ORLIBlibrary.gut,ngut Proposed by Beasley (1985a;b) (these instanes are two-dimensional uttingproblems that were transformed into 2D-BPP as desribed in Faroe et al.(2003)). Available from the ORLIB library.beng Proposed by Bengtsson (1982), available in PakLib2(Fekete and van der Veen, 2007),http://mo.math.nat.tu-bs.de/paklib/index.html .3.3. GA on�guration. The on�guration of geneti algorithms is oftentimesmore an art form than a siene. In our past experiene with geneti algorithmsbased on the same evolutionary strategy (see Gonçalves and Almeida (2002), Erisson et al.(2002), Gonçalves and Resende (2004), Gonçalves et al. (2005), Buriol et al. (2005),Buriol et al. (2007), Gonçalves (2007), Gonçalves et al. (2009), Gonçalves et al.(2009), Fontes and Gonçalves (2009) Gonçalves and Resende (2011a), Festa et al.(2010), Gonçalves and Resende (2011b), Gonalves and Sousa (2011), Gonçalves et al.(2011), Silva et al. (2011), Gonçalves and Resende (2012a), Gonçalves and Resende(2012b)), we obtained good results with values of TOP, BOT, and CrossoverProbability(CProb) in the intervals shown in Table 4.Table 4. Range of parameters in past implementations.Parameter IntervalTOP 0.10 � 0.25BOT 0.15 � 030Crossover Probability (CProb) 0.70 � 0.80For the population size, we have obtained good results by indexing it to thedimension of the problem, i.e. we use small size populations for small problems andlarger populations for larger problems. With this in mind, we onduted a smallpilot study to obtain a reasonable on�guration (sixteen 3D instanes, two fromeah lass with n = 200). We tested all the ombinations of the following values:

• TOP ∈ {0.10, 0.15, 0.20, 0.25}; BOT ∈ {0.15, 0.20, 0.25, 0.30}; CProb ∈
{0.70, 0.75, 0.80};
• Population size with 10, 20, 30, and 40 times the number of items in theproblem instane.For eah of the possible on�gurations, we made three independent runs of the al-gorithm (with three distint seeds for the random number generator) and omputed

http://www.or.deis.unibo.it/research_pages/ORinstances/2BP.html
http://www.or.deis.unibo.it/research_pages/ORinstances/2BP.html
http://mo.math.nat.tu-bs.de/packlib/index.html
http://mo.math.nat.tu-bs.de/packlib/index.html


14 J. F. GONÇALVES AND M.G.C. RESENDEthe average total value. The on�guration that minimized the sum, over the pilotproblem instanes, was TOP = 10%, BOT = 15%, CProb = 0.7, and Populationsize = 30 times the number of boxes in the problem instane. After some experi-mentation with the problem instanes in the pilot study we ame to the onlusionthat using �ve parallel populations and exhanging information every 15 genera-tions was a reasonable on�guration for this type of problem. The on�gurationpresented in Table 5 was held onstant for all experiments and all problem in-stanes. The omputational results presented in the next setion demonstrate thatthis on�guration not only provides exellent results in terms of solution qualitybut is also very robust.Table 5. Con�guration of parameters for BRKGA-BPP.Parameter Value
p = 30 × n

pe = 0.10 × p

pm= 0.15 × p

ρe= 0.70Number of populations = 5Exhange information between pops = Every 15 generationsFitness = aNB = Adjusted Number of Bins (tominimize)Stopping Criterion = 300 generations3.4. Computational results. Algorithm BRKGA-BPP was implemented in C++and the omputational experiments were arried out on a omputer with a IntelCore i7-2630QM �2.0 GHz CPU running the Linux operating system (Fedora re-lease 16).As desribed above, BRKGA-BPP allows eah box to use, if possible, severalorientations (six orientations for the 3D and two orientations for the 2D ). However,the other benhmark algorithms only use one orientation. To make the omparisonfair we onstrained our algorithm (BRKGA-BPP) to use only the orientation thatthe other benhmark algorithms use. To show the potential of BRKGA-BPP whenall the box orientations are allowed we have also inluded in the tables olumnswith header 6r and 2r whih orrespond to the results that BRKGA-BPP obtainswhen all rotations are allowed respetively for 3D and 2D instanes (as expeted,the results are better).The omputational results orresponding to 3D instanes are shown in Table 6,whih ompares the solutions obtained by BRKGA-BPP with the other benhmarkalgorithms referred in Table 1. Eah row of the table gives the average values forthe instanes of eah lass-size. Column 4 shows L2, the orresponding lower boundobtained by Martello et al. (2000). Columns 5 to 8 ontain details of the BRKGA-BPP: the olumn with header 6r represents the average best solution found whenall six rotations are allowed and the �tness funtion used is aNB ; the olumn withheader NB represents the average best solution found when no rotations are allowedand �tness funtion used is NB ; the olumn with header aNB represents the average



BRKGA FOR 2D/3D BIN PACKING 15best solution found when no rotations are allowed and �tness funtion used is aNB ;the olumn with header Time represents the average time to the best solution. Thelast four rows show the results, �rst for all lasses for a omplete omparison withTS3 and GVND and then for lasses 1, 4, 5, 6, 7, 8 whih allow the omparisonwith TS 2PACK and GLS .The results show that BRKGA-BPP onsistently equals or outperforms algo-rithms TS3,GVND, and GLS. In relation to algorithm TS 2PACK the results showthat BRKGA-BPP obtains better values for 13 sublasses, obtains equal valuesfor 9 sublasses, and obtains worst values for only 2 sublasses (4-100 and 8-100).The statistial analysis of the results using the Wiloxon test for the mathed pairsBRKGA-BPP < TS3, BRKGA-BPP < GVND, BRKGA-BPP < TS2PACK, andBRKGA-BPP < GLS show that BRKGA-BPP is signi�antly better than all theother algorithms obtaining, respetively, p-values of 0.00002045, 0.003482, 0.001068,and 0.0003597, for the paired omparisons.The omputational results orresponding to the 2D instanes are shown in Ta-bles 7 and 8, whih ompare the solutions obtained by BRKGA-BPP with the otherbenhmark algorithms referred in Table 1. In Table 7 eah row gives the averagevalues for the instanes of eah lass-size. Column 4 shows LB∗, the lower boundreported by Monai and Toth (2006), omputed by applying all the lower-boundingproedures from the literature and an exat algorithm for a long omputing time.Columns 5 to 8 ontain details for BRKGA-BPP: the olumn with header 2r rep-resents the average best solution found when two rotations are allowed and the�tness funtion used is aNB ; the olumn with header NB represents the averagebest solution found when no rotations are allowed and�tness funtion used is NB ;the olumn with header aNB represents the average best solution found when norotations are allowed and �tness funtion used is aNB , the olumn with header
Time represents the average time to the best solution. The last �ve rows show theresults for a omplete omparison with GVND, SCH, GLS, TS3, and HBP. Table8, has the same struture as Table 7 and ompares BRKGA-BPP with the otherbenhmark algorithms on a set of two-dimensional instanes whih are well-knownin the literature. The results in Table 7 show that the BRKGA-BPP algorithmonsistently equals or outperforms algorithms GVND, SCH, GLS, TS3, and HBPin all sublasses. The statistial analysis of the results using the Wiloxon testfor the mathed pairs BRKGA-BPP < GVND, BRKGA-BPP < SCH, BRKGA-BPP < GLS, BRKGA-BPP < TS2PACK, and BRKGA-BPP < HBP show thatBRKGA-BPP is signi�antly better than all the other algorithms obtaining, respe-tively, p-values of 0.01007, 0.004305, 0.00001403, 0.00000008536, and 0.00003105 forthe paired omparisons. For the sublasses in Table 8 the BRKGA-BPP obtainsthe same values as GVND and GLS and outperforms SCH and TS3 in one of thesublasses.



16 J. F. GONÇALVES AND M.G.C. RESENDETable 6. Results for the three-dimensional instanes.BRKGA-BPPClass Bin size n L2 6r NB aNB Time (s) TS3 GVND TS
2
PACK GLS1 100 Ö 100 Ö 100 50 12.5 11.5 13.4 13.4 2.1 13.4 13.4 13.4 13.4100 25.1 22.9 26.7 26.6 17.8 26.6 26.6 26.7 26.7150 34.7 32.0 36.6 36.3 45.2 36.7 36.4 37.0 37.0200 48.4 43.7 51.0 50.7 69.1 51.2 50.9 51.1 51.22 100 Ö 100 Ö 100 50 12.7 11.7 13.9 13.8 3.9 13.8 13.8 - -100 24.1 22.5 25.7 25.5 20.5 25.7 25.7 - -150 35.1 32.2 37.0 36.7 39.2 37.2 36.9 - -200 47.5 42.9 49.6 49.4 91.6 50.1 49.4 - -3 100 Ö 100 Ö 100 50 12.3 11.6 13.3 13.3 4.1 13.3 13.3 - -100 24.7 22.7 26.2 25.9 21.2 26.0 26.0 - -150 36.0 32.4 37.6 37.5 43.6 37.7 37.6 - -200 47.8 43.0 50.1 49.8 78.2 50.5 50.0 - -4 100 Ö 100 Ö 100 50 28.7 28.9 29.4 29.4 5.0 29.4 29.4 29.4 29.4100 57.6 58.4 59.0 59.0 26.4 59.0 59.0 58.9 59.0150 85.2 86.4 86.8 86.8 40.7 86.8 86.8 86.8 86.8200 116.3 118.3 118.8 118.8 60.3 118.8 118.8 118.8 119.05 100 Ö 100 Ö 100 50 7.3 7.5 8.3 8.3 6.9 8.4 8.3 8.3 8.3100 12.9 13.7 15.0 15.0 15.0 15.0 15.0 15.2 15.1150 17.4 18.5 20.1 19.9 33.7 20.4 20.1 20.1 20.2200 24.4 25.3 27.1 27.1 67.5 27.6 27.1 27.4 27.26 10 Ö 10 Ö 10 50 8.7 8.9 9.8 9.8 5.4 9.9 9.8 9.8 9.8100 17.5 17.9 19.0 18.8 25.9 19.1 19.0 19.1 19.1150 26.9 27.6 29.2 29.2 42.3 29.4 29.2 29.2 29.4200 35.0 35.5 37.2 37.2 75.0 37.7 37.4 37.7 37.77 40 Ö 40 Ö 40 50 6.3 6.4 7.4 7.4 6.5 7.5 7.4 7.4 7.4100 10.9 10.8 12.3 12.2 12.6 12.5 12.5 12.3 12.3150 13.7 13.7 15.5 15.2 27.2 16.1 16.0 15.8 15.8200 21.0 21.6 23.4 23.4 72.5 23.9 23.5 23.5 23.58 100 Ö 100 Ö 100 50 8.0 8.3 9.2 9.2 11.7 9.3 9.2 9.2 9.2100 17.5 17.5 18.9 18.9 21.4 18.9 18.9 18.8 18.9150 21.3 22.0 23.6 23.5 48.2 24.1 24.1 23.9 23.9200 26.7 27.5 29.4 29.2 64.0 30.3 29.8 30.0 29.9Total lasses 1, 4-8 6840 6848 7271 7253 7320 7286 7298 7302Total lasses 1-8 9242 9038 9805 9772 9863 9813Note: The best values for the versions with no rotation appear in bold.



BRKGA FOR 2D/3D BIN PACKING 17Table 7. Results for the two-dimensional instanes. Part IBRKGA-BPP℄textitClass Bin size n LB∗ 2r NB aNB Time (s) GVND SCH GLS TS3 HBP1 10 Ö 10 20 7.1 6.6 7.1 7.1 0.0 7.1 7.1 7.1 7.1 7.140 13.4 12.8 13.4 13.4 0.1 13.4 13.4 13.4 13.5 13.460 19.7 19.5 20 20 0.9 20 20 20.1 20.1 20.180 27.4 27 27.5 27.5 0.2 27.5 27.5 27.5 28.2 27.5100 31.7 31.3 31.7 31.7 3.3 31.7 31.7 32.1 32.6 31.82 30 Ö 30 20 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.040 1.9 1.9 1.9 1.9 0.1 1.9 1.9 1.9 2.0 1.960 2.5 2.5 2.5 2.5 0.1 2.5 2.5 2.5 2.7 2.580 3.1 3.1 3.1 3.1 0.7 3.1 3.1 3.1 3.3 3.1100 3.9 3.9 3.9 3.9 0.5 3.9 3.9 3.9 4.0 3.93 40 Ö 40 20 5.1 4.7 5.1 5.1 0.1 5.1 5.1 5.1 5.5 5.140 9.2 9.2 9.4 9.4 0.9 9.4 9.4 9.4 9.7 9.560 13.6 13.4 13.9 13.9 2.9 13.9 13.9 14.0 14.0 14.080 18.7 18.2 18.9 18.9 3.3 18.9 18.9 19.1 19.8 19.1100 22.1 22 22.3 22.3 3.7 22.3 22.3 22.6 23.6 22.64 100 Ö 100 20 1.0 1.0 1.0 1.0 0.2 1.0 1.0 1.0 1.0 1.040 1.9 1.9 1.9 1.9 0.5 1.9 1.9 1.9 1.9 1.960 2.3 2.3 2.5 2.5 2.3 2.5 2.5 2.5 2.6 2.580 3 3.1 3.1 3.1 1.2 3.1 3.2 3.3 3.3 3.3100 3.7 3.7 3.8 3.7 1.1 3.8 3.8 3.8 4.0 3.85 100 Ö 100 20 6.5 5.9 6.5 6.5 0.2 6.5 6.5 6.5 6.6 6.540 11.9 11.4 11.9 11.9 0.5 11.9 11.9 11.9 11.9 11.960 17.9 17.2 18 18 2.7 18 18 18.1 18.2 1880 24.1 23.9 24.7 24.7 6.3 24.7 24.7 24.9 25.1 24.8100 27.9 27.7 28.2 28.1 3.4 28.2 28.2 28.8 29.5 28.76 300 Ö 300 20 1.0 1.0 1.0 1.0 0.2 1.0 1.0 1.0 1.0 1.040 1.5 1.6 1.7 1.6 3.5 1.7 1.7 1.8 1.9 1.860 2.1 2.1 2.1 2.1 1.2 2.1 2.1 2.2 2.2 2.180 3.0 3.0 3.0 3.0 2.3 3.0 3.0 3.0 3.0 3.0100 3.2 3.2 3.4 3.3 3.1 3.4 3.4 3.4 3.4 3.47 100 Ö 100 20 5.5 5.2 5.5 5.5 0.1 5.5 5.5 5.5 5.5 5.540 10.9 10.2 11.1 11.1 0.4 11.1 11.1 11.3 11.4 11.160 15.6 14.6 15.9 15.8 3.1 15.9 15.8 15.9 16.2 16.080 22.4 20.8 23.2 23.2 7.9 23.2 23.2 23.2 23.2 23.2100 26.9 25 27.1 27.1 4.0 27.1 27.1 27.5 27.7 27.48 100 Ö 100 20 5.8 5.3 5.8 5.8 0.1 5.8 5.8 5.8 5.8 5.840 11.2 10.3 11.3 11.3 0.7 11.3 11.3 11.4 11.4 11.360 15.9 14.7 16.1 16.1 3.6 16.1 16.2 16.3 16.2 16.280 22.3 20.4 22.4 22.4 2.3 22.4 22.4 22.5 22.6 22.6100 27.4 25.2 27.8 27.8 4.5 27.8 27.9 28.1 28.4 28.09 100 Ö 100 20 14.3 14.3 14.3 14.3 0.1 14.3 14.3 14.3 14.3 14.340 27.8 27.5 27.8 27.8 0.4 27.8 27.8 27.8 27.8 27.860 43.7 43.5 43.7 43.7 0.9 43.7 43.7 43.7 43.8 43.780 57.7 57.3 57.7 57.7 1.7 57.7 57.7 57.7 57.7 57.7100 69.5 69.3 69.5 69.5 2.8 69.5 69.5 69.5 69.5 69.510 100 Ö 100 20 4.2 4.1 4.2 4.2 1.0 4.2 4.2 4.2 4.3 4.340 7.4 7.2 7.4 7.4 0.4 7.4 7.4 7.4 7.5 7.460 9.8 9.9 10.0 10.0 3.2 10.0 10.1 10.2 10.4 10.280 12.3 12.5 12.9 12.8 8.1 12.9 12.8 13.0 13.0 13.0100 15.3 15.4 15.9 15.8 7.9 15.9 15.9 16.2 16.6 16.2Total lasses 1-10 7173 6988 7241 7234 7241 7243 7284 7360 7275Note: The best values for the versions with no rotation appear in bold.



18 J. F. GONÇALVES AND M.G.C. RESENDEThe performane of the novel �tness measure (adjusted number of bins, or aNB),in relation to the the usual number of bins, NB, is also demonstrated in Tables 6and 7 where aNB produes better results than NB for 16 3D-sublasses and for4 2D-sublasses. Overall the use of aNB instead of NB redued the total numberof bins from 9803 to 9772 for the 3D instanes and from 7241 to 7234 for the 2Dinstanes.In terms of omputational times we annot make any fair and meaningful om-ments sine all the other approahes were implemented and tested on omputerswith di�erent omputing power. Instead, we limit ourselves to reporting the averagerunning times approahes.Table 8. Results for the two-dimensional instanes. Part IIBRKGA-BPPClass n Instanes LB∗

2r NB aNB Time (s) GVND SCH GLS TS3gut 16-62 3 9 7.33 9 9 1.66 9 9 9 9gut 10-50 13 8 7.31 8 8 0.25 8 8 8 8.31ngut 7-22 12 2.67 2.5 2.67 2.67 0.01 2.67 2.67 2.67 3beng 1-8 20-120 8 6.75 6.75 6.75 6.75 0.19 6.75 6.88beng 9-10 160-200 2 6.5 6.5 6.5 6.5 1.24 6.5Note: The best values for the versions with no rotation appear in bold.4. Conluding remarksIn this paper we addressed the three-dimensional bin paking problem whihonsists in paking, with no overlap, a set of three-dimensional retangular shapedboxes into the minimum number of three-dimensional retangular shaped bins.All the bins have idential known dimensions and eah box i is has dimensions
(di, wi, hi) for i = 1, . . . , n. It is assumed that the boxes an be rotated.A novel multi-population biased random-key geneti algorithm (BRKGA) forthe 2D-BPP and 3D-BPP was developed. The approah uses a maximal-spaerepresentation to manage the free spaes in the bins (Lai and Chan, 1997). Theproposed algorithm hybridizes a novel plaement proedure with a multi-populationgeneti algorithm based on random keys. The BRKGA is used to evolve the order inwhih the boxes are paked into the bins and the parameters used by the plaementproedure. Two heuristi proedures, Bak-Bottom-Left and the Bak-Left-Bottom,are used to determine the bin and the free maximal spae where eah box is plaed.A novel �tness funtion that improves signi�antly the solutions quality is alsodeveloped.The new approah is extensively tested on 858 problem instanes. The omputa-tional experiments demonstrate not only that the approah performs extremely wellbut that it obtains the best overall results when ompared with other approahespublished in the literature. It redued the total number of bins used from 9803 to9772 for the 3D instanes and from 7241 to 7234 for the 2D instanes.ReferenesJ.C. Bean. Geneti algorithms and random keys for sequening and optimization.ORSA J. on Computing, 6:154�160, 1994.



BRKGA FOR 2D/3D BIN PACKING 19J.E. Beasley. Algorithms for unonstrained two-dimensional guillotine utting. J.of the Operational Researh Soiety, 36:297�306, 1985a.J.E. Beasley. An exat two-dimensional non-guillotine utting tree searh proe-dure. Operations Researh, 33:49�64, 1985b.J.O. Berkey and P.Y. Wang. Two-dimensional �nite bin-paking algorithms. J. ofthe operational researh soiety, 38:423�429, 1987.M.A. Boshetti. New lower bounds for the three-dimensional �nite bin pakingproblem. Disrete Applied Mathematis, 140:241�258, 2004.M.A. Boshetti and A. Mingozzi. The two-dimensional �nite bin paking problem.Part I: New lower bounds for the oriented ase. 4OR: A Quarterly J. of OperationsResearh, 1:27�42, 2003a.M.A. Boshetti and A. Mingozzi. The two-dimensional �nite bin paking prob-lem. Part II: New lower and upper bounds. 4OR: A Quarterly J. of OperationsResearh, 1:135�147, 2003b.L.S. Buriol, M.G.C. Resende, C.C. Ribeiro, and M. Thorup. A hybrid genetialgorithm for the weight setting problem in OSPF/IS-IS routing. Networks, 46:36�56, 2005.L.S. Buriol, M.G.C. Resende, and M. Thorup. Survivable IP network design withOSPF routing. Networks, 49:51�64, 2007.N. Christo�des and C. Whitlok. An algorithm for two-dimensional utting prob-lems. Operations Researh, 25:30�44, 1977.T.G. Craini, G. Perboli, and R. Tadei. TS2PACK: A two-level tabu searh for thethree-dimensional bin paking problem. European J. of Operational Researh,195:744�760, 2009.E. den Boef, J. Korst, S. Martello, D. Pisinger, and D. Vigo. Erratum to �The three-dimensional bin paking problem": Robot-pakable and orthogonal variants ofpaking problems. Operations Researh, 53:735�736, 2005.M. Erisson, M.G.C. Resende, and P.M. Pardalos. A geneti algorithm for theweight setting problem in OSPF routing. J. of Combinatorial Optimization, 6:299�333, 2002.O. Faroe, D. Pisinger, and M. Zahariasen. Guided loal searh for the three-dimensional bin-paking problem. INFORMS J. on Computing, 15:267�283, 2003.S. Fekete and J. Shepers. A new exat algorithm for general orthogonal d-dimensional knapsak problems. In Algorithms�ESA'97, pages 144�156. Springer,1997.S.P. Fekete and J. Shepers. A ombinatorial haraterization of higher-dimensionalorthogonal paking. Mathematis of Operations Researh, 29:353�368, 2004.S.P. Fekete and J.C. van der Veen. PakLib2: An integrated library of multi-dimensional paking problems. European J. of Operational Researh, 183:1131�1135, 2007.S.P. Fekete, Shepers J., and VanderVeen J.C. An exat algorithm for higher-dimensional orthogonal paking. Operations Researh, 55:569�587, 2007.P. Festa, J.F. Gonçalves, M.G.C. Resende, and R.M.A. Silva. Automati tuningof GRASP with path-relinking heuristis with a biased random-key geneti al-gorithm. In P. Festa, editor, Experimental Algorithms, volume 6049 of LetureNotes in Computer Siene, pages 338�349. Springer, 2010.



20 J. F. GONÇALVES AND M.G.C. RESENDED.B.M.M. Fontes and J.F. Gonçalves. A multi-population geneti algorithm fortree-shaped network design problems. In IJCCI 2009 � International Joint Con-ferene on Computational Intelligene, Proeedings, pages 177�182, Otober 2009.J.F. Gonalves and P.S.A. Sousa. A geneti algorithm for lot sizing and shed-uling under apaity onstraints and allowing bakorders. International J. ofProdution Researh, 49:2683�2703, 2011.J.F. Gonçalves. A hybrid geneti algorithm-heuristi for a two-dimensional or-thogonal paking problem. European J. of Operational Researh, 183:1212�1229,2007.J.F. Gonçalves and J.R. Almeida. A hybrid geneti algorithm for assembly linebalaning. J. of Heuristis, 8:629�642, 2002.J.F. Gonçalves and M.G.C. Resende. An evolutionary algorithm for manufaturingell formation. Computers and Industrial Engineering, 47:247�273, 2004.J.F. Gonçalves and M.G.C. Resende. A parallel multi-population geneti algorithmfor a onstrained two-dimensional orthogonal paking problem. J. of Combina-torial Optimization, 22:180�201, 2011a.J.F. Gonçalves and M.G.C. Resende. Biased random-key geneti algorithmsfor ombinatorial optimization. J. of Heuristis, 17:487�525, 2011b.J.F. Gonçalves and M.G.C. Resende. A biased random-key geneti algorithm forjob-shop sheduling. Tehnial report, AT&T Labs Researh, Florham Park, NewJersey, Marh 2012a.J.F. Gonçalves and M.G.C. Resende. A parallel multi-population biased random-key geneti algorithm for a ontainer loading problem. Computers and OperationsResearh, 39:179�190, 2012b.J.F. Gonçalves, J.J.M. Mendes, and M.G.C. Resende. A hybrid geneti algorithmfor the job shop sheduling problem. European J. of Operational Researh, 167:77�95, 2005.J.F. Gonçalves, J.J.M. Mendes, and M.G.C. Resende. A geneti algorithm for theresoure onstrained multi-projet sheduling problem. European J. of Opera-tional Researh, 189:1171�1190, 2009.J.F. Gonçalves, M.G.C. Resende, and J.J.M. Mendes. A biased random-key ge-neti algorithm with forward-bakward improvement for the resoure onstrainedprojet sheduling problem. J. of Heuristis, 17:467�486, 2011.D.S. Johnson. Near-optimal bin paking algorithms. PhD thesis, MassahusettsInstitute of Tehnology, 1973.K.K. Lai and J.W.M. Chan. Developing a simulated annealing algorithm for theutting stok problem. Computers and Industrial Engineering, 32:115�127, 1997.D. Liu and H. Teng. An improved BL-algorithm for geneti algorithm of the orthog-onal paking of retangles. European J. of Operational Researh, 112:413�420,1999.A. Lodi, S. Martello, and D. Vigo. Approximation algorithms for the orientedtwo-dimensional bin paking problem. European J. of Operational Researh, 112:158�166, 1999.A. Lodi, S. Martello, and D. Vigo. Heuristi algorithms for the three-dimensionalbin paking problem. European J. of Operational Researh, 141:410�420, 2002.A. Lodi, S. Martello, and D. Vigo. TSpak: A uni�ed tabu searh ode for multi-dimensional bin paking problems. Annals of Operations Researh, 131:203�213,2004.



BRKGA FOR 2D/3D BIN PACKING 21S. Martello and D. Vigo. Exat solution of the two-dimensional �nite bin pakingproblem. Management siene, 44:388�399, 1998.S. Martello, D. Pisinger, and D. Vigo. The three-dimensional bin paking problem.Operations Researh, 48:256�267, 2000.S. Martello, D. Pisinger, D. Vigo, E.D. Boef, and J. Korst. Algorithm 864: Generaland robot-pakable variants of the three-dimensional bin paking problem. ACMTransations on Mathematial Software, 33:7:1�7:12, 2007.M. Monai and P. Toth. A set-overing-based heuristi approah for bin-pakingproblems. INFORMS J. on Computing, 18:71�85, 2006.F. Parreño, R. Alvarez-Valdes, J.F. Oliveira, and J.M. Tamarit. A hybridGRASP/VND algorithm for two-and three-dimensional bin paking. Annals ofOperations Researh, 179:203�220, 2010.D.M. Silva, R.M.A. Silva, G.R. Mateus, J.F. Gonçalves, M.G.C. Resende, andP. Festa. An iterative re�nement algorithm for the minimum branh vertiesproblem, volume 6630 of Leture Notes in Computer Siene. Springer, 2011.W.M. Spears and K.A. Dejong. On the virtues of parameterized uniform rossover.In Proeedings of the Fourth International Conferene on Geneti Algorithms,pages 230�236, 1991.G. Wäsher, H. Haussner, and H. Shumann. An improved typology of utting andpaking problems. European J. of Operational Researh, 183:1109�1130, 2007.(José Fernando Gonçalves) Fauldade de Eonomia do Porto / NIAAD, Rua Dr.Roberto Frias, 4200-464 Porto, Portugal.E-mail address: jfgonal�fep.up.pt(Mauriio G.C. Resende) Algorithms and Optimization Researh Department, AT&TLabs Researh, 180 Park Avenue, Room C241, Florham Park, NJ 07932 USA.E-mail address, M.G.C. Resende: mgr�researh.att.om


	1. Introduction
	2. Biased random-key genetic algorithm
	2.1. Overview
	2.2. Biased random-key genetic algorithm
	2.3. Placement strategy
	2.4. Parallel implementation

	3. Numerical experiments
	3.1. Benchmark algorithms
	3.2. Test problem instances
	3.3. GA configuration 
	3.4. Computational results

	4. Concluding remarks
	References

