A BIASED RANDOM-KEY GENETIC ALGORITHM FOR A 2D
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ABsTRACT. We present a novel multi-population biased random-key genetic
algorithm (BRKGA) for the 2D and 3D bin packing problem. The approach
uses a maximal-space representation to manage the free spaces in the bins.
The proposed algorithm uses a decoder based on a novel placement proce-
dure within a multi-population genetic algorithm based on random keys. The
BRKGA is used to evolve the order in which the boxes are packed into the
bins and the parameters used by the placement procedure. Two heuristic pro-
cedures are used to determine the bin and the free maximal space where each
box is placed. A novel fitness function that improves significantly the quality
of the solutions produced is also developed. The new approach is extensively
tested on 858 problem instances from the literature. The computational exper-
iments demonstrate not only that the approach performs extremely well, but
that it obtains the best overall results when compared with other approaches
published in the literature. It reduced the total number of bins used from 9803
to 9772 for the 3D instances and from 7241 to 7234 for the 2D instances.

1. INTRODUCTION

The three-dimensional bin packing problem (3D-BPP) counsists in packing, with
no overlap, a set of three-dimensional rectangular shaped boxes (items) into the
minimum number of three-dimensional rectangular shaped bins (containers). All
the bins have identical known dimensions (D, W, H) and each box i has dimensions
(di,w;, h;) for i = 1,...,n. Without loss of generality one can assume that all
the input data are positive integers and that d; < D, h; < H and d; < D for
i =1,...,n. It is also assumed that the boxes can be rotated. Figure [l shows
an example of a bin packing problem with two bins and more than two hundred
boxes. The two-dimensional bin packing problem (2B-BPP) addresses the problem
for two-dimensional bins (W, H) and boxes (w;, h;) and can be treated as a special
case of 3D-BPP when d; = D for i = 1,...,n. According to the typology proposed
by [Wiischer et all (2007), bin packing problems are classified as 3D-SBSBPP (3D-
Single Bin-Size Bin Packing Problems). The problem is strongly NP-hard as it gen-
eralizes the strongly NP-hard one-dimensional bin packing problem ,
2000).

Three-dimensional packing problems have numerous relevant industrial applica-
tions such as loading cargo into vehicles, containers or pallets, or in package design.
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The 3D-BPP can also arise as a subproblem of other complex problems not only in
packing and cutting but also in some scheduling problems.

An exact method for the 3D-BPP that uses a two-level branch & bound proce-
dure was proposed by Martello et _all ([Z_O_O_d) Their proposal initially only solved
robot-packable problems (ldﬁn_Bmij_aJJ 12005), but it was subsequently modified
to solve the general problem (Martello et all, u)ﬂj] [Fekete and Schepers ([J)})j]
and [Fekete and Schepers MM define an implicit representation of the packing
by means of Interval Graphs (IGs), the Packing Class (PC) representation. The
authors consider the relative position of the boxes in a feasible packing and, from
the projection of the items on each orthogonal axis, they define a graph describing
the overlappings of the items in the container.

A new class of lower bounds was introduced byw% . The
authors extend the use of dual feasible functions, first introduced by %
to two- and three-dimensional packing problems, including 3D-SBSBPP.

) proposed a lower bound that dominates previous ones. These bounds make
use of new dual feasible functions. [Boschetti and Mingozzi ([m&djﬂ) propose new
lower bounds for the two-dimensional case.

Several constructive and meta-heuristic algorithms have been designed for solv-
ing large bin packing problems. [Faroe et a ] ([2003) proposed a guided local search
(GLS) heuristic for 3D-BPP and 2D-BPP. This heuristic is based on the iterative
solution of constraint satisfaction problems. Starting with an upper bound on the
number of bins obtained by a greedy heuristic, the algorithm iteratively decreases
the number of bins, each time searching for a feasible packing of the boxes us-
ing the GLS method. |Lodi et all (1999; 2002) developed tabu search algorithms
based on new constructive procedures for the two- and three-dimensional cases and
ILodi et all ([2_0_0_4]) propose a unified tabu search code for general multi-dimensional
bin packing problems. More recently, |Crainic et all (2009)developed a two-level
tabu search algorithm, in which the first level aims to reduce the number of bins
and the second optimizes the packing of the bins, using the representation proposed
by [Fekete and Schepers (2004) and [Fekete et all (2007).

For the two-dimensional bin packing problem (2D-BPP), Boschetti and Mingozzi
(IM) developed an effective constructive heuristic that assigns a score to each
box, considers the boxes according to decreasing values of the corresponding scores,
updates the scores using a specified criterion, and iterates until either an op-
timal solution is found or a maximum number of iterations has been reached.
Monaci and Toth (2006) designed a set-covering-based heuristic approach in which
in a first phase a large number of columns are generated by heuristic procedures and
by the exact algorithm of Martello and Vigd (1998) with a time-limit. In the second
phase these columns are used for solving a set-covering problem which results in
the solution of the original bin packing problem. Parreno et all (201 ) propose a
new hybrid GRASP/VND algorithm for solving the three-dimensional bin packing
problems which can also be directly applied to the two-dimensional case. The con-
structive phase is based on a maximal-space heuristic developed for the container
loading problem. In the improvement phase, several new moves are designed and
combined in a VND structure.
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FicUrRe 1. Example of a Bin Packing Problem with two bins.

3D-SBSBPP is NP-hard in the strong sense. Therefore, when large instances
must be saolved, heuristics are the methods of choice. In this paper we present
a novel multi-population biased random-key genetic algorithm (BRKGA) for the
2D-BPP and the 3D-BPP. The approach uses a maximal-space representation to
manage the free spaces in the bins. The proposed algorithm uses a novel placement
procedure as a component of the decoder within a multi-population genetic algo-
rithm based on random keys. The BRKGA is used to evolve the order in which the
boxes are packed into the bins and the parameters used by the placement procedure.

The remainder of the paper is organized as follows. In Section [2] we introduce
the new approach. We describe the BRKGA, the new placement strategy, the
new fitness function, and the paralell implementation. In Section Bl we report on
computational experiments, and in Section [l make concluding remarks.

2. BIASED RANDOM-KEY GENETIC ALGORITHM

We begin this section with an overview of the proposed solution process. This
is followed by a discussion of the biased random-key genetic algorithm, including
detailed descriptions of the solution encoding and decoding, evolutionary process,
fitness function, and parallel implementation.

2.1. Overview. The new approach is based on a constructive heuristic algorithm
which places the boxes, one at a time, in the bins. A new bin is opened whenever a
box does not fit in at least one of the bins that are already open. The management
of the feasible placement positions is based on a list of empty mazimal-spaces as
described in |[Lai and Chan (119_9_?]) A 2D or 3D empty space is maximal if it
is not contained in any other space in the bin. Each time a box is placed in
an empty maximal-space, new empty maximal-spaces are generated. The new
approach proposed in this paper combines a multi-population biased random-key
genetic algorithm, a new placement strategy, and a novel fitness function.

The role of the genetic algorithm is to evolve the encoded solutions, or chromo-
somes, which represent the boz packing sequence (BPS), the vector of placement
heuristics (VPH) and the vector of box orientations (VBO) used for packing the
boxes into the bins. For each chromosome, the following phases are applied to
decode the chromosome:
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(1) Decoding of the box packing sequence: This first phase decodes part of the
chromosome into the BPS. i.e. the sequence in which the boxes are packed
into the bins.

(2) Decoding of placement heuristics: The second phase decodes part of the
chromosome into the vector of placement heuristics (VPH) to be used by
the placement procedure.

(3) Decoding of box orientations: The third phase decodes part of the chromo-
some into the vector of box orientations ( VBO) to be used by the placement
procedure.

(4) Placement strategy: The fourth phase makes use of BPS, VPH and VBO,
defined in phases 1, 2, and 3, and constructs a packing of the boxes into
the bins.

(5) Fitness evaluation: The final phase computes the fitness of the solution (or
measure of quality of the bin packing). For this phase we developed a novel
measure of fitness which improves the quality of the solutions significantly.

Figure Rl illustrates the sequence of steps applied to each chromosome generated by
the BRKGA.

Phase
> Chromosome
E v
= Decode 1t part of chromosome Box Packing
o into the Sequence
k=2 Box Packing Sequence (BPS)
<
2
E Y
Q Decode 2" part of chromosome
) into the Place[ne_nt
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et
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o A
[ Decode 3 part of chromosome
8 into the o Box
a Vector of Box Orientations (VBO) rientation
E 5
c
H A 4 A A
3 Use BPS, VPH and VBO Placement
g to place each box in the bins Procedure
w
\ 4
Feedback Fitness of Chromosome
(Number of Bins Used)

FI1GURE 2. Architecture of the algorithm.
The remainder of this section describes the genetic algorithm, the decoding pro-
cedure, and the placement strategy in detail.

2.2. Biased random-key genetic algorithm. Genetic algorithms with random
keys, or random-key genetic algorithms (RKGA), for solving sequencing problems
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were introduced in @) In a RKGA, chromosomes are represented as
vectors of randomly generated real numbers in the interval [0,1]. The decoder,
a deterministic algorithm, takes as input a chromosome and associates with it a
solution of the combinatorial optimization problem for which an objective value or
fitness can be computed.

A RKGA evolves a population of random-key vectors over a number of gener-
ations (iterations). The initial population is made up of p vectors of r random
keys. Each component of the solution vector, or random key, is generated indepen-
dently at random in the real interval [0, 1]. After the fitness of each individual is
computed by the decoder in generation g, the population is partitioned into two
groups of individuals: a small group of p. elite individuals, i.e. those with the best
fitness values, and the remaining set of p — p. non-elite individuals. To evolve a
population g a new generation of individuals is produced. All elite individual of
the population of generation g are copied without modification to the population
of generation g + 1. RKGAs implement mutation by introducing mutants into
the population. A mutant is a vector of random keys generated in the same way
that an element of the initial population is generated. At each generation, a small
number p,,, of mutants is introduced into the population. With p. + p,,, individuals
accounted for in the population g + 1, p — p. — py, additional individuals need to
be generated to complete the p individuals that make up population g + 1. This is
done by producing p — p. — py, offspring solutions through the process of mating or
Crossover.

A biased random-key genetic algorithm, or BRKGA (Gongcalves and Resendé,
), differs from a RKGA in the way parents are selected for mating. While
in the RKGA of Bearn (@) both parents are selected at random from the entire
current population, in a BRKGA each element is generated combining a parent
selected at random from the elite partition in the current population and one from
the non-elite partition. Repetition in the selection of a mate is allowed and therefore
an individual can produce more than one offspring in the same generation. As in
RKGAs, parameterized uniform crossover (lS_pﬁaIs_a‘mLIEJQnQ |l9_9_].| is used to
implement mating in BRKGAs. Let p. be the probability that an offspring inherits
the vector component of its elite parent. Recall that r denotes the number of
components in the solution vector of an individual. For ¢ = 1,... 7, the i-th
component ¢(i) of the offspring vector ¢ takes on the value of the i-th component
e(i) of the elite parent e with probability p. and the value of the i-th component
&(i) of the non-elite parent € with probability 1 — p,.

When the next population is complete, i.e. when it has p individuals, fitness
values are computed for all of the newly created random-key vectors and the pop-
ulation is partitioned into elite and non-elite individuals to start a new generation.

A BRKGA searches the solution space of the combinatorial optimization problem
indirectly by searching the continuous r-dimensional hypercube, using the decoder
to map solutions in the hypercube to solutions in the solution space of the combi-
natorial optimization problem where the fitness is evaluated.

To specify a biased random-key genetic algorithm, we simply need to specify
how solutions are encoded and decoded and how their corresponding fitness val-
ues are computed. We specify our algorithm next by first showing how the bin
packing solutions are encoded and then decoded and how their fitness evaluation is
computed.
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2.2.1. Chromosome representation and decoding . A chromosome encodes a solution
to the problem as a vector of random keys. In a direct representation, a chromosome
represents a solution of the original problem, and is called genotype, while in an
indirect representation it does not, and special procedures are needed to obtain from
it a solution called a phenotype. In the present context, the direct representation
of packing patterns as chromosomes is too complicated to encode and manipulate.
Instead, solutions will be represented indirectly by parameters that are later used
by a decoding procedure to obtain a solution. To obtain the solution (phenotype)
we use the decoding procedures described in Section 233

Each solution chromosome is made of 3n genes as depicted in FigureBl The first
n genes are used to obtain the Box Packing Sequence, genes n+ 1 to 2n are used to
obtain the Vector of Placement Heuristics, and genes 2n+1 to 3n are used to obtain
the Vector of Box Orientations. The placement procedure, described in Section
2.3.3] makes use of BPS, VPH, and VBO to construct a solution corresponding to
the chromosome.

Chromosome = (gene, , ..., gene, , genep.s, ..., gene,, , genNey.y, ... , geneg, )

J J
Y

Y Y
Box Packing Sequence / /

Box Orientation

Placement Heuristic

FIGURE 3. Solution encoding.

The decoding (mapping) of the first n genes of each chromosome into a box
packing sequence (BPS) is accomplished by sorting in ascending order of gene values
the corresponding boxes. Figure @ shows an example of the decoding process for
the BPS. In this example there are 8 boxes. The sorting of the genes in ascending
order of their value produces the following BPS = (5,8,3,1,4,2,6,7).

Unordered boxes II‘ Iz' IZ‘ E‘ Iz' % n
Unsorted genes

®

Sorted genes
Box Packing Sequence (BPS) IE‘ n /

Box Packing Sequence (BPS)
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FIGURE 4. Decoding of the Box Packing Sequence.

In the placement procedure presented in Section 2.3.2] we make use of two place-
ment heuristics; Back-Bottomn-Left (BBL) and Back-Left-Bottom (BLB). The de-
coding of the vector of placement heuristics ( VPH) is accomplished for i = 1,...,n,
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using the expression:

BBL if gene, ; <3,
VPH; =
BLB if gene, ;> 3.

The VPH is used by the placement procedure to select which placement heuristic
to apply on each box.

The decoding of the vector of box orientations ( VBO) is obtained for i = 1,...,n,
by

VBO; = geney,, ;-

The VBO is used by the placement procedure to determine what orientation will
be applied to each box.

2.2.2. Fitness function. The evolutionary process requires a measure of solution
fitness, or quality measure. The natural fitness function for this type of problem is
the number of bins (NB) used by a solution. However, since different solutions can
have the same NB value, this measure does not differentiate well the potential for
improvement of solutions having the same value of NB.

To better differentiate the potential for improvement we developed a novel mea-
sure of fitness which we call adjusted number of bins (aNB). aNB combines NB
with a measure (in the interval ]0,1[ ) of the potential for improvement of the bin
packing solution. The rationale for this new measure is that if we have two solu-
tions that use the same number of bins, then the one having the least loaded bin
will have more potential for improvement.

Let LeastLoad be the load on the least loaded bin of a solution and let the
capacity of the each bin be BinCap = W x H x D for the 3D case and BinCap =
W x H for the 2D case. The value of the adjusted number of bins is given by

LeastLoad

aNB = NB + BinCap "

The computational results in Section [B] show that this novel measure of fitness
improves the quality of the solutions in a significant way.

2.2.3. Multi-population strategy. Our BRKGA uses a multi-population strategy,
where several populations are evolved independently in parallel. In this strategy
all populations exchange good-quality chromosomes after a pre-determined number
of generations. When evaluating possible interchange strategies, we observed that
exchanging too many chromosomes, or exchanging them too frequently, often leads
to the disruption of the evolutionary process. Therefore, we adopt a strategy that,
after a pre-determined number of generations, inserts the overall two best chromo-
somes (from the union of all populations) into all populations. In Section[Blwe show
how this choice was determined empirically.

2.3. Placement strategy. In the next sections we describe the main components
of the placement strategy.
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2.3.1. Maximal-spaces. While trying to place a box in the bins we use a list .S of
empty maximal-spaces (EMSs), i.e. largest empty parallelepiped spaces available
for filling with boxes. Maximal-spaces are represented by their vertices with mini-
mum and maximum coordinates ({x;, y;, z;} and {X;,Y;, Z;}, respectively). When
searching for a place to pack a box we need to consider only the coordinates cor-
responding to the EMS vertices with minimum coordinates (z;,y;, z;). To gener-
ate and keep track of the EMSs, we make use of the difference process (DP) of

i (|l9_9_ﬂ) Figure [l depicts an example of the application of the DP
process. In the example we assume that we have one box to be packed in one bin
(see Figure Bh). Initially, since the bin is empty, the box is packed at the origin of
the bin as shown in Figure Bb. To pack the next box, we first update the list S of
empty maximal-spaces. Figure[Bkc shows the three new EMSs generated by the DP
process. Every time a box is packed, we reapply the DP process to update list .S
before we pack the next box.

N/

a) Box to be packed and initial maximal-space

b) Box packed in the maximal-space c) Newly generated maximal-spaces

FIGurE 5. Example of difference process (DP).

After the list S has been updated by the DP one still needs to eliminate EMSs
with infinite thinness or those that are totally inscribed by other EMSs. This pro-
cess is the most time consuming in the packing process. To reduce the computation
time for this task we added the following rules to the difference process:

o If the volume of a newly created EMS is smaller than the volume of each
of the boxes remaining to be packed, do not add it to S (note that EMSs
with infinite thinness will automatically be removed by this step);
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e If the smallest dimension of a newly created EMS is smaller than the small-
est dimension of each of the boxes remaining to be packed, do not add it to
S (note that this rule is very important for the elimination of EMSs where
no box fits and that are not removed by the previous rule, since they have
a large volume).

With the above rules we where able to reduce, in most problem instances, the
computational time by approximately 60%.

2.3.2. Placement heuristics. Recall from that {x;,y;, z;} denote the minimum coor-
dinates of EMS;. Initially we considered only the Back-Bottomn-Left (BBL) proce-
dure which orders the £MSs in a bin in such a way that EMS; < EMS; if z; < x;,
orif x; = x; and z; < zj, or if x; = x5, z; = 25, and y; < y;, and then chooses the
first EMS in which the box to be packed fits (using any of the possible orientations).
Figurel@l shows pseudo-code for the BBL placement heuristic. However, as observed
by ILiu_and Teng (1999), we noticed that some optimal solutions could not be con-
structed by the BBL placement heuristic. To overcome this weakness, we combine
the BBL placement heuristic with a Back-Left-Bottom (BLB) placement heuris-
tic. This heuristic orders the EMSs in a bin in such a way that EMS; < EMS;
if x; < xj, orif ; = 2; and y; < y;, or if z; = z;, y; = y;, and 2z; < 2z;, and
then chooses the first EMS in which the box to be packed fits (using any of the
possible orientations). In summary, our placement strategy uses two placement
heuristics, the Back-Bottom-Left and the Back-Left-Bottom, to construct a packing
of the boxes. The vector of placement heuristics (VPH), supplied by the genetic
algorithm, indicates, for each box to be packed, whether it should be placed using
the BBL or BLB heuristic.

2.3.3. Placement procedure. The placement procedure follows a sequential process
which packs a box in a bin at each stage. The order in which the boxes are packed
is defined by the BPS evolved by the BRKGA.

The procedure combines the following elements: the vectors BPS, VPH, and
VBO defined by the BRKGA, the lists S, of empty maximal spaces for every open
bin b, and the BBL and BLB placement heuristics. Each stage is comprised of the
following six main steps:

(1) Box selection;

(2) Placement heuristic selection;

(3) Bin and empty maximal space selection;
(4) Box orientation selection;

(5) Box packing;

(

The pseudo-code of the placement procedure is given in Figure[6l The box selection
at stage ¢ selects for packing the box in the i-th position of BPS (lines 4 of the
pseudo-code). The placement heuristic to be used is defined by the i-th position
of VPH (lines 5 of the pseudo-code). The selection of the bin and empty maximal
space searches, in the open bins, for a maximal space where the box BPS; fits (using
the placing heuristic selected and any of the possible box orientations). As soon as
a bin is found the bin search stops (first fit rule). If no bin is found a new bin is
open (lines 6 to 23 of the pseudo-code). Once a bin and a maximal space is selected
the box orientation selection is carried out (lines 24 to 26 of the pseudo-code). The
box packing consists in packing the box BPS; in the bin and the maximal selected
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(lines 27 of the pseudo-code). The final step, state information update, consists in
updating the list of empty maximal spaces, of the bin where the last box packing
occurred using the DP procedure (lines 28 of the pseudo-code).

procedure BBL( BoxToPack, BIN )
1 Let Ngys be the number of available EMSs in bin BIN;
2 Initialize X* < D; Y* < W; Z* + H; EMS* + 0;
3 fori=1,...,Ngys do
4 Let z, y, z be the minimum =z, y, z coordinates of EMS;;
5 if BozToPack fits in EMS; of bin BIN then
6 if z < X* or
(z=X*"and 2 < Z*) or

. (z=X*"and z=Z7" and y <Y* ) then
7 X* g, 72, Y* vy ;
8 EMS* = EMS; B
9 end if
10 end if
11 end for
12 return EMS* // returns 0 if it was not possible

to pack BoxToPack in bin BIN;
end BBL

FIGURE 6. Pseudo-code of the Back-Bottom-Left (BBL) procedure.

2.4. Parallel implementation. Parallelization applies only to the task that per-
forms the evaluation of the chromosome fitness since it is the most time consuming.
Since the tasks related with the other steps of the GA consume very little time
they are not parallelized. This type of parallelization is easy to implement and
in multi-core CPUs allows for a large reduction in computational times (almost
a linear speed-up with the number of cores). The parallel implementation of our
heuristic was done using the OpenMP Application Program Interface (API) which
supports multi-platform shared-memory parallel programming in C/C++.

3. NUMERICAL EXPERIMENTS

We next report on results obtained on a set of experiments conducted to evaluate
the performance of the multi-population biased random-key genetic algorithm for
the bin packing problem (BRKGA-BPP) proposed in this paper.

3.1. Benchmark algorithms. We compare BRKGA-BPP with the six approaches
listed in Table[Il These approaches are the most effective in the literature to date.
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procedure PLACEMENT (BPS, VPH, VBO)

// ** Initialization
1 Let B be the set of open bins and NB the number of open bins;
2 B+ {1}, NB + 0

3 fori=1,...,n do
. // ** Box selection
4 BoxzToPack < BPS; // select the box in the i*" position of BPS;

// ¥* Placement Heuristic selection

5 PlaceHeur = VPH ;;

. // ** Bin and Empty Maximal Space selection
6 EMS < 0, BinSelected < 0;

7 for k=1,...,NB do

: // try to pack box BozToPack in a EMS of bin k using PlaceHeur;
8 if PlaceHeur = BBL then

9 EMS < BBL(BozToPack, k);

10 else if PlaceHeur = BLB then

11 EMS < BLB(BozxToPack, k);

12 end if

13 if EMS > 0 then // box is packable in EMS of bin k;
14 BinSelected < k ;

15 exit for // stop for cycle, go to 18;

16 end if

17 end for

18 if BinSelected = 0 then // open a new empty bin;

19 BinSelected < NB + 1;

20 B < B U {BinSelected };

21 NB « NB + 1;

22 EMS < 1; // pack BozToPack at the origin of the new empty bin;
23 end if

. // ¥* Box Orientation selection

24 Let BOs be a vector with all the possible packable orientations

. of box BoxToPack in EMS of bin BinSelected;

25 Let nBOs be number of box orientations in vector BOs ;

26 Let BO* = BOs ([ VBO BozTorack X nBOs]) be the box orientation
. selected to pack BoxtoPack in EMS of bin BinSelected;

. // ** Box packing
27 Pack BoxToPack at the origin of maximal space EMS
. of bin BinSelected using orientation BO™;

. // ** State Information update
28 Update the list of EMSs of bin BinSelected using
the DP procedure of [Lai and Chanl (1997);

29 end for
end PLACEMENT

FIGURE 7. Pseudo-code for the PLACEMENT procedure.

11
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TaBLE 1. Efficient approaches used for comparison.

Approach Source of approach Type of method
783 [Lodi et all (1999) and [Lodi et all Tabu Search (2D/3D)
(2002)
HBP [Boschetti and Mingozzi (20035) Heuristic (2D)
GLS [Faroe et all (2003) Guided Local Search (2D/3D)
SCH M) Set Covering Based Heuristic
(2)
TS2PACK (@) Parallel Tabu Search (3D)
GVND [Parrefio et all (2010) GRASP/VND (2D/3D)

3.2. Test problem instances. A standard benchmark set of 320 problems gener-
ated by Martello et all (2000) was used for testing the 3D bin packing algorithm.
The instance generator is available at http://www.diku.dk/“pisinger/codes.htmll.
These instances are organized into 8 classes with 40 instances each, 10 instances for
each value of n € {50, 100, 150, 200}. For Classes 1-5, the bin size is W = H =
D = 100 and there are five types of items which have w;, hj, and d; uniformly
random according to the intervals presented in Table2l For Class k (k= 1,...,5),
each item is of type k is chosen with probability 60%, and the other four types with
probability 10% each. Classes 6-8 are as follows:

Class 6: bin size W = H = D = 10; wj, h;, d; € [1, 10];

Class 7: bin size W = H = D = 40; wj, h;, d; € [1, 35];

Class 8: bin size W = H = D = 100; w;, hj, d; € [1, 100].

TABLE 2. Type characterization.
Type 1: w; € [1, sW],  h; € [3H, H], d; € [3D, DJ;
Type 2 w; € [2W, sW], h; € [1, 3H], d; € [2D, DJ;
Type 3: w; € [2W, W], h; € [2H, H], d; €[1, $D};
Type 4: w; € [sW, W], h; € [3H, H|, d; € [3D, DJ;

Type 5: w; € [1, %W} , h; € [1,

For testing the 2D bin packing algorithm we used the following sets of instances
which were also used to evaluate the other benchmark algorithms by their authors.
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TABLE 3. Datasets used for testing the 2D bin packing algorithm.

Class Description

bwmv Includes 500 instances generated by (@) and by

erk a ang
m (@ These instances are divided into 10 classes where

each class comprises 50 instances, 10 for each value of

n € {20, 40, 60, 80, 100}. All instances, and the corresponding best known
solution values, are available at
http://www.or.deis.unibo.it/research_pages/ORinstances/2BP.html.

cgeut Proposed by [Christofides and WhitlocK (1977). Available from ORLIB

library.
geut, Proposed by mm) (these instances are two-dimensional cutting
ngcut problems that were transformed into 2D-BPP as described in [Faroe et all

(2003)). Available from the ORLIB library.

beng Proposed by Bengtsson (1982), available in PackLib2

Fekete and van der y;:gﬂ,),

http://mo.math.nat.tu-bs.de/packlib/index.html|

3.3. GA configuration. The configuration of genetic algorithms is oftentimes

more an art form than a science. In our past experience with genetic algorithms

based on the same evolutionary strategy (seelGoncalves and Almeida (2002), [Ericsson et all
(2002), |Goncalves and Resende ([J)DJ \Goncalves et all (2005), Bumuu_l (2005),
Buriol et al! (2007), [Goncalved (2007), [Goncalves et, al! (IZD_QQ), I.GQngalsL&Le_t_aJJ
(2009), [Fontes and Goncalves (2009) @Qﬂgﬂﬂmdﬁﬂendd (2011a), [Festa et_all
(2010), lGoncalves and Resende (2011H), (Goncalves and Sousal (2011), Goncalves et, all
.J)_IJE,IS va et all (2011),/Gongalves an nd Resendd (20124), [Goncalves and Resende
(2012h)), we obtained good results with values of TOP, BOT, and CrossoverProbability
(CProb) in the intervals shown in Table [

TABLE 4. Range of parameters in past implementations.

Parameter Interval
TOP 0.10 - 0.25
BOT 0.15 - 030

Crossover Probability (CProb) 0.70 — 0.80

For the population size, we have obtained good results by indexing it to the
dimension of the problem, i.e. we use small size populations for small problems and
larger populations for larger problems. With this in mind, we conducted a small
pilot study to obtain a reasonable configuration (sixteen 3D instances, two from
each class with n = 200). We tested all the combinations of the following values:

e TOP € {0.10, 0.15, 0.20, 0.25}; BOT € {0.15, 0.20, 0.25, 0.30}; CProb €
{0.70, 0.75, 0.80};

e Population size with 10, 20, 30, and 40 times the number of items in the
problem instance.

For each of the possible configurations, we made three independent runs of the al-
gorithm (with three distinct seeds for the random number generator) and computed


http://www.or.deis.unibo.it/research_pages/ORinstances/2BP.html
http://www.or.deis.unibo.it/research_pages/ORinstances/2BP.html
http://mo.math.nat.tu-bs.de/packlib/index.html
http://mo.math.nat.tu-bs.de/packlib/index.html
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the average total value. The configuration that minimized the sum, over the pilot
problem instances, was TOP = 10%, BOT = 15%, CProb = 0.7, and Population
size = 30 times the number of boxes in the problem instance. After some experi-
mentation with the problem instances in the pilot study we came to the conclusion
that using five parallel populations and exchanging information every 15 genera-
tions was a reasonable configuration for this type of problem. The configuration
presented in Table Bl was held constant for all experiments and all problem in-
stances. The computational results presented in the next section demonstrate that
this configuration not only provides excellent results in terms of solution quality
but is also very robust.

TABLE 5. Configuration of parameters for BRKGA-BPP.

Parameter Value

p=130xn
pe =010 x p
pm=|0.15 x p
pe= | 0.70
Number of populations = | 5
Exchange information between pops = | Every 15 generations
Fitness = | aNB = Adjusted Number of Bins (to
minimize)
Stopping Criterion = | 300 generations

3.4. Computational results. Algorithm BRKGA-BPP was implemented in C++
and the computational experiments were carried out on a computer with a Intel
Core i7-2630QM @2.0 GHz CPU running the Linux operating system (Fedora re-
lease 16).

As described above, BRKGA-BPP allows each box to use, if possible, several
orientations (six orientations for the 3D and two orientations for the 2D ). However,
the other benchmark algorithms only use one orientation. To make the comparison
fair we constrained our algorithm (BRKGA-BPP) to use only the orientation that
the other benchmark algorithms use. To show the potential of BRKGA-BPP when
all the box orientations are allowed we have also included in the tables columns
with header 6r and 2r which correspond to the results that BRKGA-BPP obtains
when all rotations are allowed respectively for 3D and 2D instances (as expected,
the results are better).

The computational results corresponding to 3D instances are shown in Table [6]
which compares the solutions obtained by BRKGA-BPP with the other benchmark
algorithms referred in Table[Il Each row of the table gives the average values for
the instances of each class-size. Column 4 shows Lo, the corresponding lower bound
obtained by Martello et all (2000). Columns 5 to 8 contain details of the BRKGA-
BPP: the column with header 6r represents the average best solution found when
all six rotations are allowed and the fitness function used is aNB; the column with
header NB represents the average best solution found when no rotations are allowed
and fitness function used is NB; the column with header a NB represents the average
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best solution found when no rotations are allowed and fitness function used is aNB;
the column with header Tme represents the average time to the best solution. The
last four rows show the results, first for all classes for a complete comparison with
TS3 and GVND and then for classes 1, 4, 5, 6, 7, 8 which allow the comparison
with TS*PACK and GLS.

The results show that BRKGA-BPP consistently equals or outperforms algo-
rithms 753, GVND, and GLS. In relation to algorithm T'S? PACK the results show
that BRKGA-BPP obtains better values for 13 subclasses, obtains equal values
for 9 subclasses, and obtains worst values for only 2 subclasses (4-100 and 8-100).
The statistical analysis of the results using the Wilcoxon test for the matched pairs
BRKGA-BPP < TS3, BRKGA-BPP < GVND, BRKGA-BPP < TS?PACK, and
BRKGA-BPP < GLS show that BRKGA-BPP is significantly better than all the
other algorithms obtaining, respectively, p-values of 0.00002045, 0.003482, 0.001068,
and 0.0003597, for the paired comparisons.

The computational results corresponding to the 2D instances are shown in Ta-
bles[7 and B which compare the solutions obtained by BRKGA-BPP with the other
benchmark algorithms referred in Table [l In Table [0 each row gives the average
values for the instances of each class-size. Column 4 shows LB*, the lower bound
reported by Monaci and Toth dZ_O_O_d), computed by applying all the lower-bounding
procedures from the literature and an exact algorithm for a long computing time.
Columns 5 to 8 contain details for BRKGA-BPP: the column with header 2r rep-
resents the average best solution found when two rotations are allowed and the
fitness function used is aNB; the column with header NB represents the average
best solution found when no rotations are allowed andfitness function used is NB;
the column with header aNB represents the average best solution found when no
rotations are allowed and fitness function used is a/NB, the column with header
Time represents the average time to the best solution. The last five rows show the
results for a complete comparison with GVND, SCH, GLS, TS3, and HBP. Table
[8 has the same structure as Table [ and compares BRKGA-BPP with the other
benchmark algorithms on a set of two-dimensional instances which are well-known
in the literature. The results in Table [0 show that the BRKGA-BPP algorithm
consistently equals or outperforms algorithms GVND, SCH, GLS, TS3, and HBP
in all subclasses. The statistical analysis of the results using the Wilcoxon test
for the matched pairs BRKGA-BPP < GVND, BRKGA-BPP < SCH, BRKGA-
BPP < GLS, BRKGA-BPP < TS?PACK, and BRKGA-BPP < HBP show that
BRKGA-BPP is significantly better than all the other algorithms obtaining, respec-
tively, p-values of 0.01007, 0.004305, 0.00001403, 0.00000008536, and 0.00003105 for
the paired comparisons. For the subclasses in Table [§ the BRKGA-BPP obtains
the same values as GVND and GLS and outperforms SCH and T'S# in one of the
subclasses.
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TABLE 6. Results for the three-dimensional instances.

BRKGA-BPP
Class Bin size n Lo 6r NB aNB  Time (s) TS3 GVND TS?PACK GLS
1 100 x 100 x 100 50 12.5 11.5 13.4 13.4 2.1 13.4 13.4 13.4 13.4
100  25.1 22.9 26.7 26.6 17.8 26.6 26.6 26.7 26.7
150  34.7 32.0 36.6 36.3 45.2 36.7 36.4 37.0 37.0
200 48.4 43.7 51.0 50.7 69.1 51.2 50.9 51.1 51.2
2 100 x 100 x 100 50 12.7 11.7 13.9 13.8 3.9 13.8 13.8 - -
100 24.1 22.5 25.7 25.5 20.5 25.7 25.7 - -
150  35.1 32.2 37.0 36.7 39.2 37.2 36.9 - -
200  47.5 42.9 49.6 49.4 91.6 50.1 49.4 - -
3 100 x 100 x 100 50 12.3 11.6 13.3 13.3 4.1 13.3 13.3 - -
100 24.7 22.7 26.2 25.9 21.2 26.0 26.0 - -
150 36.0 32.4 37.6 37.5 43.6 37.7 37.6 - -
200 47.8 43.0 50.1 49.8 78.2 50.5 50.0 - -
4 100 x 100 x 100 50 28.7 28.9 29.4 29.4 5.0 29.4 29.4 29.4 29.4
100 57.6 58.4 59.0 59.0 26.4 59.0 59.0 58.9 59.0
150 85.2 86.4 86.8 86.8 40.7 86.8 86.8 86.8 86.8
200 116.3 118.3 118.8 118.8 60.3 118.8 118.8 118.8 119.0
5 100 x 100 x 100 50 7.3 7.5 8.3 8.3 6.9 8.4 8.3 8.3 8.3
100 129 13.7 15.0 15.0 15.0 15.0 15.0 15.2 15.1
150 17.4 18.5 20.1 19.9 33.7 20.4 20.1 20.1 20.2
200 24.4 25.3 27.1 27.1 67.5 27.6 27.1 27.4 27.2
6 10 x 10 x 10 50 8.7 8.9 9.8 9.8 5.4 9.9 9.8 9.8 9.8
100 17.5 17.9 19.0 18.8 25.9 19.1 19.0 19.1 19.1
150 26.9 27.6 29.2 29.2 42.3 29.4 29.2 29.2 29.4
200  35.0 35.5 37.2 37.2 75.0 37.7 37.4 37.7 37.7
7 40 x 40 x 40 50 6.3 6.4 7.4 7.4 6.5 7.5 7.4 7.4 7.4
100 10.9 10.8 12.3 12.2 12.6 12.5 12.5 12.3 12.3
150 13.7 13.7 15.5 15.2 27.2 16.1 16.0 15.8 15.8
200 21.0 21.6 23.4 23.4 72.5 23.9 23.5 23.5 23.5
8 100 x 100 x 100 50 8.0 8.3 9.2 9.2 11.7 9.3 9.2 9.2 9.2
100 17.5 17.5 18.9 18.9 21.4 18.9 18.9 18.8 18.9
150 21.3 22.0 23.6 23.5 48.2 24.1 24.1 23.9 23.9
200 26.7 27.5 29.4 29.2 64.0 30.3 29.8 30.0 29.9
Total classes 1, 4-8 6840 6848 7271 7253 7320 7286 7298 7302
Total classes 1-8 9242 9038 9805 9772 9863 9813

Note: The best values for the versions with no rotation appear in bold.
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TABLE 7. Results for the two-dimensional instances. Part I
BRKGA-BPP
JtextitClass Bin size n LB 2r NB  oNB Time (s) GVND SCH GLS TS3 HBP
1 10 x 10 20 71 66 7.1 7.1 0.0 7.1 71 71 71 7.1
40 134 12.8 13.4 13.4 0.1 13.4  13.4 13.4 135 13.4
60 19.7 19.5 20 20 0.9 20 20 201 201  20.1
80 274 27 275 275 0.2 27.5  27.5 27.5 28.2 27.5
100 317 313 317 31.7 3.3 31.7  31.7 321 326 318
2 30 x 30 20 1.0 10 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0
40 1.9 1.9 1.9 1.9 0.1 1.9 1.9 1.9 20 1.9
60 25 25 25 2.5 0.1 2.5 25 25 27 25
80 31 31 31 3.1 0.7 3.1 31 31 33 3.1
100 39 39 39 3.9 0.5 3.9 3.9 39 40 3.9
3 40 x 40 20 51 47 51 5.1 0.1 5.1 51 5.1 55 5.1
40 9.2 9.2 94 94 0.9 9.4 9.4 9.4 97 95
60 13.6 13.4 13.9 13.9 2.9 13.9  13.9 140 140 140
80 187 18.2 18.9 18.9 3.3 18.9 18.9 191 198 19.1
100 221 22 22.3 22.3 3.7 22.3  22.3 226 23.6 22.6
4 100 x 100 20 1.0 10 1.0 1.0 0.2 1.0 1.0 1.0 1.0 1.0
40 19 19 1.9 1.9 0.5 1.9 1.9 19 19 1.9
60 23 23 25 25 2.3 2.5 25 25 26 2.5
80 3 3.1 3.1 3.1 1.2 3.1 32 33 33 3.3
100 37 37 38 3.7 11 3.8 3.8 38 40 3.8
5 100 x 100 20 65 59 6.5 6.5 0.2 6.5 65 65 66 6.5
40 119 114 11.9 11.9 0.5 11.9 119 11.9 11.9 11.9
60 17.9 17.2 18 18 2.7 18 18 181 182 18
80 241  23.9 24.7 24.7 6.3 24.7  24.7 249 251 248
100 279 27.7 28.2 28.1 3.4 28.2 28.2  28.8 295 287
6 300 x 300 20 1.0 10 1.0 1.0 0.2 1.0 1.0 1.0 1.0 1.0
40 15 1.6 17 1.6 3.5 1.7 17 1.8 19 1.8
60 21 21 21 21 1.2 2.1 2.1 22 22 2.1
80 30 30 3.0 3.0 2.3 3.0 3.0 3.0 3.0 3.0
100 32 32 34 3.3 3.1 3.4 34 34 34 34
7 100 x 100 20 55 52 5.5 5.5 0.1 5.5 55 5.5 55 5.5
40 109 102 11.1 11.1 0.4 111 111 113 114 11.1
60 156 146 159 15.8 3.1 159 158 159 162  16.0
80 224 208 23.2 23.2 7.9 23.2  23.2 23.2 23.2 23.2
100 269 25 27.1 27.1 4.0 27.1  27.1 275 277 27.4
8 100 x 100 20 58 53 58 5.8 0.1 5.8 58 5.8 58 5.8
40 112 103 11.3 11.3 0.7 11.3  11.3 114 114 11.3
60 159 147 16.1 16.1 3.6 16.1 162 163 162  16.2
80 223 204 22.4 224 2.3 22.4 224 225 226 22.6
100 274 252 27.8 27.8 4.5 27.8 279 281 284  28.0
9 100 x 100 20 143 143 14.3 14.3 0.1 14.3 143 14.3 14.3 14.3
40 278 275 27.8 27.8 0.4 27.8  27.8 27.8 27.8 27.8
60  43.7 435 43.7 43.7 0.9 43.7  43.7 43.7 438  43.7
80 57.7 57.3 5B7.T B57.7 1.7 57.7  57.7 BT.T 57.T 57.7
100 69.5 69.3 69.5 69.5 2.8 69.5 69.5 69.5 69.5 69.5
10 100 x 100 20 42 41 4.2 4.2 1.0 4.2 4.2 42 43 43
40 74 T2 7.4 T4 0.4 7.4 74 T4 75 T4
60 9.8 9.9 10.0 10.0 3.2 10.0 101 102 104  10.2
80 123 125 129 12.8 8.1 129 12.8 13.0 130  13.0
100 153 154 159 15.8 7.9 15.9 159 162 16.6  16.2
Total classes 1-10 7173 6988 7241 7234 7241 7243 7284 7360 7275

Note: The best values for the versions with no rotation appear in bold.
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The performance of the novel fitness measure (adjusted number of bins, or aNB),
in relation to the the usual number of bins, NB, is also demonstrated in Tables
and [0 where aNB produces better results than NB for 16 3D-subclasses and for
4 2D-subclasses. Overall the use of aNB instead of NB reduced the total number
of bins from 9803 to 9772 for the 3D instances and from 7241 to 7234 for the 2D
instances.

In terms of computational times we cannot make any fair and meaningful com-
ments since all the other approaches were implemented and tested on computers
with different computing power. Instead, we limit ourselves to reporting the average
running times approaches.

TABLE 8. Results for the two-dimensional instances. Part II

BRKGA-BPP
Class n Instances LB™ 2r NB aNB Time (s) GVND SCH GLS TS3
cgeut 16-62 3 9 7.33 9 9 1.66 9 9 9 9
geut 10-50 13 8 7.31 8 8 0.25 8 8 8 8.31
ngcut 7-22 12 2.67 2.5 2.67 2.67 0.01 2.67 2.67 2.67 3
beng 1-8 20-120 8 6.75 6.75 6.75 6.75 0.19 6.75 6.88
beng 9-10  160-200 2 6.5 6.5 6.5 6.5 1.24 6.5

Note: The best values for the versions with no rotation appear in bold.

4. CONCLUDING REMARKS

In this paper we addressed the three-dimensional bin packing problem which
consists in packing, with no overlap, a set of three-dimensional rectangular shaped
boxes into the minimum number of three-dimensional rectangular shaped bins.
All the bins have identical known dimensions and each box ¢ is has dimensions
(di,w;, h;) for i =1,...,n. It is assumed that the boxes can be rotated.

A novel multi-population biased random-key genetic algorithm (BRKGA) for
the 2D-BPP and 3D-BPP was developed. The approach uses a maximal-space
representation to manage the free spaces in the bins (ILﬁi_&nd_Qhﬁd, |L9_9_Z|) The
proposed algorithm hybridizes a novel placement procedure with a multi-population
genetic algorithm based on random keys. The BRKGA is used to evolve the order in
which the boxes are packed into the bins and the parameters used by the placement
procedure. Two heuristic procedures, Back-Bottom-Left and the Back-Left-Bottom,
are used to determine the bin and the free maximal space where each box is placed.
A novel fitness function that improves significantly the solutions quality is also
developed.

The new approach is extensively tested on 858 problem instances. The computa-
tional experiments demonstrate not only that the approach performs extremely well
but that it obtains the best overall results when compared with other approaches
published in the literature. It reduced the total number of bins used from 9803 to
9772 for the 3D instances and from 7241 to 7234 for the 2D instances.
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