
A BIASED RANDOM-KEY GENETIC ALGORITHM FOR A 2DAND 3D BIN PACKING PROBLEMJOSÉ FERNANDO GONÇALVES AND MAURICIO G.C. RESENDEAbstra
t. We present a novel multi-population biased random-key geneti
algorithm (BRKGA) for the 2D and 3D bin pa
king problem. The approa
huses a maximal-spa
e representation to manage the free spa
es in the bins.The proposed algorithm uses a de
oder based on a novel pla
ement pro
e-dure within a multi-population geneti
 algorithm based on random keys. TheBRKGA is used to evolve the order in whi
h the boxes are pa
ked into thebins and the parameters used by the pla
ement pro
edure. Two heuristi
 pro-
edures are used to determine the bin and the free maximal spa
e where ea
hbox is pla
ed. A novel �tness fun
tion that improves signi�
antly the qualityof the solutions produ
ed is also developed. The new approa
h is extensivelytested on 858 problem instan
es from the literature. The 
omputational exper-iments demonstrate not only that the approa
h performs extremely well, butthat it obtains the best overall results when 
ompared with other approa
hespublished in the literature. It redu
ed the total number of bins used from 9803to 9772 for the 3D instan
es and from 7241 to 7234 for the 2D instan
es.1. Introdu
tionThe three-dimensional bin pa
king problem (3D-BPP) 
onsists in pa
king, withno overlap, a set of three-dimensional re
tangular shaped boxes (items) into theminimum number of three-dimensional re
tangular shaped bins (
ontainers). Allthe bins have identi
al known dimensions (D,W,H) and ea
h box i has dimensions
(di, wi, hi) for i = 1, . . . , n. Without loss of generality one 
an assume that allthe input data are positive integers and that di ≤ D, hi ≤ H and di ≤ D for
i = 1, . . . , n. It is also assumed that the boxes 
an be rotated. Figure 1 showsan example of a bin pa
king problem with two bins and more than two hundredboxes. The two-dimensional bin pa
king problem (2B-BPP) addresses the problemfor two-dimensional bins (W,H) and boxes (wi, hi) and 
an be treated as a spe
ial
ase of 3D-BPP when di = D for i = 1, . . . , n. A

ording to the typology proposedby Wäs
her et al. (2007), bin pa
king problems are 
lassi�ed as 3D-SBSBPP (3D-Single Bin-Size Bin Pa
king Problems). The problem is strongly NP-hard as it gen-eralizes the strongly NP-hard one-dimensional bin pa
king problem (Martello et al.,2000).Three-dimensional pa
king problems have numerous relevant industrial appli
a-tions su
h as loading 
argo into vehi
les, 
ontainers or pallets, or in pa
kage design.Date: Mar
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2 J. F. GONÇALVES AND M.G.C. RESENDEThe 3D-BPP 
an also arise as a subproblem of other 
omplex problems not only inpa
king and 
utting but also in some s
heduling problems.An exa
t method for the 3D-BPP that uses a two-level bran
h & bound pro
e-dure was proposed by Martello et al. (2000). Their proposal initially only solvedrobot-pa
kable problems (den Boef et al., 2005), but it was subsequently modi�edto solve the general problem (Martello et al., 2007). Fekete and S
hepers (1997)and Fekete and S
hepers (2004) de�ne an impli
it representation of the pa
kingby means of Interval Graphs (IGs), the Pa
king Class (PC) representation. Theauthors 
onsider the relative position of the boxes in a feasible pa
king and, fromthe proje
tion of the items on ea
h orthogonal axis, they de�ne a graph des
ribingthe overlappings of the items in the 
ontainer.A new 
lass of lower bounds was introdu
ed by Fekete and S
hepers (1997). Theauthors extend the use of dual feasible fun
tions, �rst introdu
ed by Johnson (1973),to two- and three-dimensional pa
king problems, in
luding 3D-SBSBPP. Bos
hetti(2004) proposed a lower bound that dominates previous ones. These bounds makeuse of new dual feasible fun
tions. Bos
hetti and Mingozzi (2003a;b) propose newlower bounds for the two-dimensional 
ase.Several 
onstru
tive and meta-heuristi
 algorithms have been designed for solv-ing large bin pa
king problems. Faroe et al. (2003) proposed a guided lo
al sear
h(GLS) heuristi
 for 3D-BPP and 2D-BPP. This heuristi
 is based on the iterativesolution of 
onstraint satisfa
tion problems. Starting with an upper bound on thenumber of bins obtained by a greedy heuristi
, the algorithm iteratively de
reasesthe number of bins, ea
h time sear
hing for a feasible pa
king of the boxes us-ing the GLS method. Lodi et al. (1999; 2002) developed tabu sear
h algorithmsbased on new 
onstru
tive pro
edures for the two- and three-dimensional 
ases andLodi et al. (2004) propose a uni�ed tabu sear
h 
ode for general multi-dimensionalbin pa
king problems. More re
ently, Craini
 et al. (2009)developed a two-leveltabu sear
h algorithm, in whi
h the �rst level aims to redu
e the number of binsand the se
ond optimizes the pa
king of the bins, using the representation proposedby Fekete and S
hepers (2004) and Fekete et al. (2007).For the two-dimensional bin pa
king problem (2D-BPP), Bos
hetti and Mingozzi(2003b) developed an e�e
tive 
onstru
tive heuristi
 that assigns a s
ore to ea
hbox, 
onsiders the boxes a

ording to de
reasing values of the 
orresponding s
ores,updates the s
ores using a spe
i�ed 
riterion, and iterates until either an op-timal solution is found or a maximum number of iterations has been rea
hed.Mona
i and Toth (2006) designed a set-
overing-based heuristi
 approa
h in whi
hin a �rst phase a large number of 
olumns are generated by heuristi
 pro
edures andby the exa
t algorithm of Martello and Vigo (1998) with a time-limit. In the se
ondphase these 
olumns are used for solving a set-
overing problem whi
h results inthe solution of the original bin pa
king problem. Parreño et al. (2010) propose anew hybrid GRASP/VND algorithm for solving the three-dimensional bin pa
kingproblems whi
h 
an also be dire
tly applied to the two-dimensional 
ase. The 
on-stru
tive phase is based on a maximal-spa
e heuristi
 developed for the 
ontainerloading problem. In the improvement phase, several new moves are designed and
ombined in a VND stru
ture.
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Figure 1. Example of a Bin Pa
king Problem with two bins.3D-SBSBPP is NP-hard in the strong sense. Therefore, when large instan
esmust be saolved, heuristi
s are the methods of 
hoi
e. In this paper we presenta novel multi-population biased random-key geneti
 algorithm (BRKGA) for the2D-BPP and the 3D-BPP. The approa
h uses a maximal-spa
e representation tomanage the free spa
es in the bins. The proposed algorithm uses a novel pla
ementpro
edure as a 
omponent of the de
oder within a multi-population geneti
 algo-rithm based on random keys. The BRKGA is used to evolve the order in whi
h theboxes are pa
ked into the bins and the parameters used by the pla
ement pro
edure.The remainder of the paper is organized as follows. In Se
tion 2 we introdu
ethe new approa
h. We des
ribe the BRKGA, the new pla
ement strategy, thenew �tness fun
tion, and the paralell implementation. In Se
tion 3, we report on
omputational experiments, and in Se
tion 4 make 
on
luding remarks.2. Biased random-key geneti
 algorithmWe begin this se
tion with an overview of the proposed solution pro
ess. Thisis followed by a dis
ussion of the biased random-key geneti
 algorithm, in
ludingdetailed des
riptions of the solution en
oding and de
oding, evolutionary pro
ess,�tness fun
tion, and parallel implementation.2.1. Overview. The new approa
h is based on a 
onstru
tive heuristi
 algorithmwhi
h pla
es the boxes, one at a time, in the bins. A new bin is opened whenever abox does not �t in at least one of the bins that are already open. The managementof the feasible pla
ement positions is based on a list of empty maximal-spa
es asdes
ribed in Lai and Chan (1997). A 2D or 3D empty spa
e is maximal if itis not 
ontained in any other spa
e in the bin. Ea
h time a box is pla
ed inan empty maximal-spa
e, new empty maximal-spa
es are generated. The newapproa
h proposed in this paper 
ombines a multi-population biased random-keygeneti
 algorithm, a new pla
ement strategy, and a novel �tness fun
tion.The role of the geneti
 algorithm is to evolve the en
oded solutions, or 
hromo-somes, whi
h represent the box pa
king sequen
e (BPS ), the ve
tor of pla
ementheuristi
s (VPH ) and the ve
tor of box orientations (VBO) used for pa
king theboxes into the bins. For ea
h 
hromosome, the following phases are applied tode
ode the 
hromosome:
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oding of the box pa
king sequen
e: This �rst phase de
odes part of the
hromosome into the BPS. i.e. the sequen
e in whi
h the boxes are pa
kedinto the bins.(2) De
oding of pla
ement heuristi
s: The se
ond phase de
odes part of the
hromosome into the ve
tor of pla
ement heuristi
s (V PH) to be used bythe pla
ement pro
edure.(3) De
oding of box orientations : The third phase de
odes part of the 
hromo-some into the ve
tor of box orientations (VBO) to be used by the pla
ementpro
edure.(4) Pla
ement strategy : The fourth phase makes use of BPS, VPH and VBO,de�ned in phases 1, 2, and 3, and 
onstru
ts a pa
king of the boxes intothe bins.(5) Fitness evaluation: The �nal phase 
omputes the �tness of the solution (ormeasure of quality of the bin pa
king). For this phase we developed a novelmeasure of �tness whi
h improves the quality of the solutions signi�
antly.Figure 2 illustrates the sequen
e of steps applied to ea
h 
hromosome generated bythe BRKGA.
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Figure 2. Ar
hite
ture of the algorithm.The remainder of this se
tion des
ribes the geneti
 algorithm, the de
oding pro-
edure, and the pla
ement strategy in detail.2.2. Biased random-key geneti
 algorithm. Geneti
 algorithms with randomkeys, or random-key geneti
 algorithms (RKGA), for solving sequen
ing problems
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ed in Bean (1994). In a RKGA, 
hromosomes are represented asve
tors of randomly generated real numbers in the interval [0, 1]. The de
oder,a deterministi
 algorithm, takes as input a 
hromosome and asso
iates with it asolution of the 
ombinatorial optimization problem for whi
h an obje
tive value or�tness 
an be 
omputed.A RKGA evolves a population of random-key ve
tors over a number of gener-ations (iterations). The initial population is made up of p ve
tors of r randomkeys. Ea
h 
omponent of the solution ve
tor, or random key, is generated indepen-dently at random in the real interval [0, 1]. After the �tness of ea
h individual is
omputed by the de
oder in generation g, the population is partitioned into twogroups of individuals: a small group of pe elite individuals, i.e. those with the best�tness values, and the remaining set of p − pe non-elite individuals. To evolve apopulation g a new generation of individuals is produ
ed. All elite individual ofthe population of generation g are 
opied without modi�
ation to the populationof generation g + 1. RKGAs implement mutation by introdu
ing mutants intothe population. A mutant is a ve
tor of random keys generated in the same waythat an element of the initial population is generated. At ea
h generation, a smallnumber pm of mutants is introdu
ed into the population. With pe+pm individualsa

ounted for in the population g + 1, p − pe − pm additional individuals need tobe generated to 
omplete the p individuals that make up population g + 1. This isdone by produ
ing p− pe− pm o�spring solutions through the pro
ess of mating or
rossover.A biased random-key geneti
 algorithm, or BRKGA (Gonçalves and Resende,2011b), di�ers from a RKGA in the way parents are sele
ted for mating. Whilein the RKGA of Bean (1994) both parents are sele
ted at random from the entire
urrent population, in a BRKGA ea
h element is generated 
ombining a parentsele
ted at random from the elite partition in the 
urrent population and one fromthe non-elite partition. Repetition in the sele
tion of a mate is allowed and thereforean individual 
an produ
e more than one o�spring in the same generation. As inRKGAs, parameterized uniform 
rossover (Spears and Dejong, 1991) is used toimplement mating in BRKGAs. Let ρe be the probability that an o�spring inheritsthe ve
tor 
omponent of its elite parent. Re
all that r denotes the number of
omponents in the solution ve
tor of an individual. For i = 1, . . . , r, the i-th
omponent c(i) of the o�spring ve
tor c takes on the value of the i-th 
omponent
e(i) of the elite parent e with probability ρe and the value of the i-th 
omponent
ē(i) of the non-elite parent ē with probability 1− ρe.When the next population is 
omplete, i.e. when it has p individuals, �tnessvalues are 
omputed for all of the newly 
reated random-key ve
tors and the pop-ulation is partitioned into elite and non-elite individuals to start a new generation.A BRKGA sear
hes the solution spa
e of the 
ombinatorial optimization problemindire
tly by sear
hing the 
ontinuous r-dimensional hyper
ube, using the de
oderto map solutions in the hyper
ube to solutions in the solution spa
e of the 
ombi-natorial optimization problem where the �tness is evaluated.To spe
ify a biased random-key geneti
 algorithm, we simply need to spe
ifyhow solutions are en
oded and de
oded and how their 
orresponding �tness val-ues are 
omputed. We spe
ify our algorithm next by �rst showing how the binpa
king solutions are en
oded and then de
oded and how their �tness evaluation is
omputed.



6 J. F. GONÇALVES AND M.G.C. RESENDE2.2.1. Chromosome representation and de
oding . A 
hromosome en
odes a solutionto the problem as a ve
tor of random keys. In a dire
t representation, a 
hromosomerepresents a solution of the original problem, and is 
alled genotype, while in anindire
t representation it does not, and spe
ial pro
edures are needed to obtain fromit a solution 
alled a phenotype. In the present 
ontext, the dire
t representationof pa
king patterns as 
hromosomes is too 
ompli
ated to en
ode and manipulate.Instead, solutions will be represented indire
tly by parameters that are later usedby a de
oding pro
edure to obtain a solution. To obtain the solution (phenotype)we use the de
oding pro
edures des
ribed in Se
tion 2.3.3.Ea
h solution 
hromosome is made of 3n genes as depi
ted in Figure 3. The �rst
n genes are used to obtain the Box Pa
king Sequen
e, genes n+1 to 2n are used toobtain the Ve
tor of Pla
ement Heuristi
s, and genes 2n+1 to 3n are used to obtainthe Ve
tor of Box Orientations. The pla
ement pro
edure, des
ribed in Se
tion2.3.3, makes use of BPS, VPH, and VBO to 
onstru
t a solution 
orresponding tothe 
hromosome.

Box Packing Sequence

Chromosome = ( gene1 , … , genen ,  genen+1 , … , gene2n ,  gene2n+1 , … , gene3n )

Box Orientation

Placement HeuristicFigure 3. Solution en
oding.The de
oding (mapping) of the �rst n genes of ea
h 
hromosome into a boxpa
king sequen
e (BPS ) is a

omplished by sorting in as
ending order of gene valuesthe 
orresponding boxes. Figure 4 shows an example of the de
oding pro
ess forthe BPS. In this example there are 8 boxes. The sorting of the genes in as
endingorder of their value produ
es the following BPS = (5, 8, 3, 1, 4, 2, 6, 7).
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Box Packing Sequence (BPS)Figure 4. De
oding of the Box Pa
king Sequen
e.In the pla
ement pro
edure presented in Se
tion 2.3.2 we make use of two pla
e-ment heuristi
s; Ba
k-Bottom-Left (BBL) and Ba
k-Left-Bottom (BLB). The de-
oding of the ve
tor of pla
ement heuristi
s (VPH ) is a

omplished for i = 1, . . . , n,
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VPH i =







BBL if gene n+i ≤
1

2
,

BLB if gene n+i >
1

2
.The VPH is used by the pla
ement pro
edure to sele
t whi
h pla
ement heuristi
to apply on ea
h box.The de
oding of the ve
tor of box orientations (VBO) is obtained for i = 1, . . . , n,by

VBO i = gene 2n+i.The VBO is used by the pla
ement pro
edure to determine what orientation willbe applied to ea
h box.2.2.2. Fitness fun
tion. The evolutionary pro
ess requires a measure of solution�tness, or quality measure. The natural �tness fun
tion for this type of problem isthe number of bins (NB) used by a solution. However, sin
e di�erent solutions 
anhave the same NB value, this measure does not di�erentiate well the potential forimprovement of solutions having the same value of NB .To better di�erentiate the potential for improvement we developed a novel mea-sure of �tness whi
h we 
all adjusted number of bins (aNB). aNB 
ombines NBwith a measure (in the interval ]0, 1[ ) of the potential for improvement of the binpa
king solution. The rationale for this new measure is that if we have two solu-tions that use the same number of bins, then the one having the least loaded binwill have more potential for improvement.Let LeastLoad be the load on the least loaded bin of a solution and let the
apa
ity of the ea
h bin be BinCap = W ×H ×D for the 3D 
ase and BinCap =
W ×H for the 2D 
ase. The value of the adjusted number of bins is given by

aNB = NB +
LeastLoad

BinCap
.The 
omputational results in Se
tion 3 show that this novel measure of �tnessimproves the quality of the solutions in a signi�
ant way.2.2.3. Multi-population strategy. Our BRKGA uses a multi-population strategy,where several populations are evolved independently in parallel. In this strategyall populations ex
hange good-quality 
hromosomes after a pre-determined numberof generations. When evaluating possible inter
hange strategies, we observed thatex
hanging too many 
hromosomes, or ex
hanging them too frequently, often leadsto the disruption of the evolutionary pro
ess. Therefore, we adopt a strategy that,after a pre-determined number of generations, inserts the overall two best 
hromo-somes (from the union of all populations) into all populations. In Se
tion 3 we showhow this 
hoi
e was determined empiri
ally.2.3. Pla
ement strategy. In the next se
tions we des
ribe the main 
omponentsof the pla
ement strategy.



8 J. F. GONÇALVES AND M.G.C. RESENDE2.3.1. Maximal-spa
es. While trying to pla
e a box in the bins we use a list S ofempty maximal-spa
es (EMSs), i.e. largest empty parallelepiped spa
es availablefor �lling with boxes. Maximal-spa
es are represented by their verti
es with mini-mum and maximum 
oordinates ({xi, yi, zi} and {Xi, Yi, Zi}, respe
tively). Whensear
hing for a pla
e to pa
k a box we need to 
onsider only the 
oordinates 
or-responding to the EMS verti
es with minimum 
oordinates (xi, yi, zi). To gener-ate and keep tra
k of the EMSs, we make use of the di�eren
e pro
ess (DP) ofLai and Chan (1997). Figure 5 depi
ts an example of the appli
ation of the DPpro
ess. In the example we assume that we have one box to be pa
ked in one bin(see Figure 5a). Initially, sin
e the bin is empty, the box is pa
ked at the origin ofthe bin as shown in Figure 5b. To pa
k the next box, we �rst update the list S ofempty maximal-spa
es. Figure 5
 shows the three new EMSs generated by the DPpro
ess. Every time a box is pa
ked, we reapply the DP pro
ess to update list Sbefore we pa
k the next box.
a) Box to be packed and initial maximal-space

b)  Box packed in the maximal-space c)  Newly generated maximal-spacesFigure 5. Example of di�eren
e pro
ess (DP).After the list S has been updated by the DP one still needs to eliminate EMSswith in�nite thinness or those that are totally ins
ribed by other EMSs. This pro-
ess is the most time 
onsuming in the pa
king pro
ess. To redu
e the 
omputationtime for this task we added the following rules to the di�eren
e pro
ess:
• If the volume of a newly 
reated EMS is smaller than the volume of ea
hof the boxes remaining to be pa
ked, do not add it to S (note that EMSswith in�nite thinness will automati
ally be removed by this step);
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• If the smallest dimension of a newly 
reated EMS is smaller than the small-est dimension of ea
h of the boxes remaining to be pa
ked, do not add it to
S (note that this rule is very important for the elimination of EMSs whereno box �ts and that are not removed by the previous rule, sin
e they havea large volume).With the above rules we where able to redu
e, in most problem instan
es, the
omputational time by approximately 60%.2.3.2. Pla
ement heuristi
s. Re
all from that {xi, yi, zi} denote the minimum 
oor-dinates of EMS i. Initially we 
onsidered only the Ba
k-Bottom-Left (BBL) pro
e-dure whi
h orders the EMSs in a bin in su
h a way that EMS i < EMS j if xi < xj ,or if xi = xj and zi < zj, or if xi = xj , zi = zj , and yi < yj, and then 
hooses the�rst EMS in whi
h the box to be pa
ked �ts (using any of the possible orientations).Figure 6 shows pseudo-
ode for the BBL pla
ement heuristi
. However, as observedby Liu and Teng (1999), we noti
ed that some optimal solutions 
ould not be 
on-stru
ted by the BBL pla
ement heuristi
. To over
ome this weakness, we 
ombinethe BBL pla
ement heuristi
 with a Ba
k-Left-Bottom (BLB) pla
ement heuris-ti
. This heuristi
 orders the EMSs in a bin in su
h a way that EMS i < EMS jif xi < xj , or if xi = xj and yi < yj , or if xi = xj , yi = yj , and zi < zj, andthen 
hooses the �rst EMS in whi
h the box to be pa
ked �ts (using any of thepossible orientations). In summary, our pla
ement strategy uses two pla
ementheuristi
s, the Ba
k-Bottom-Left and the Ba
k-Left-Bottom, to 
onstru
t a pa
kingof the boxes. The ve
tor of pla
ement heuristi
s (VPH ), supplied by the geneti
algorithm, indi
ates, for ea
h box to be pa
ked, whether it should be pla
ed usingthe BBL or BLB heuristi
.2.3.3. Pla
ement pro
edure. The pla
ement pro
edure follows a sequential pro
esswhi
h pa
ks a box in a bin at ea
h stage. The order in whi
h the boxes are pa
kedis de�ned by the BPS evolved by the BRKGA.The pro
edure 
ombines the following elements: the ve
tors BPS, VPH , and

VBO de�ned by the BRKGA, the lists Sb of empty maximal spa
es for every openbin b, and the BBL and BLB pla
ement heuristi
s. Ea
h stage is 
omprised of thefollowing six main steps:(1) Box sele
tion;(2) Pla
ement heuristi
 sele
tion;(3) Bin and empty maximal spa
e sele
tion;(4) Box orientation sele
tion;(5) Box pa
king;(6) State information update.The pseudo-
ode of the pla
ement pro
edure is given in Figure 6. The box sele
tionat stage i sele
ts for pa
king the box in the i-th position of BPS (lines 4 of thepseudo-
ode). The pla
ement heuristi
 to be used is de�ned by the i-th positionof VPH (lines 5 of the pseudo-
ode). The sele
tion of the bin and empty maximalspa
e sear
hes, in the open bins, for a maximal spa
e where the box BPS i �ts (usingthe pla
ing heuristi
 sele
ted and any of the possible box orientations). As soon asa bin is found the bin sear
h stops (�rst �t rule). If no bin is found a new bin isopen (lines 6 to 23 of the pseudo-
ode). On
e a bin and a maximal spa
e is sele
tedthe box orientation sele
tion is 
arried out (lines 24 to 26 of the pseudo-
ode). Thebox pa
king 
onsists in pa
king the box BPS i in the bin and the maximal sele
ted
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ode). The �nal step, state information update, 
onsists inupdating the list of empty maximal spa
es, of the bin where the last box pa
kingo

urred using the DP pro
edure (lines 28 of the pseudo-
ode).pro
edure BBL(BoxToPack , BIN )1 Let NEMS be the number of available EMSs in bin BIN ;2 Initialize X∗ ← D; Y ∗ ←W ; Z∗ ← H ; EMS ∗ ← 0;3 for i = 1, . . . , NEMS do4 Let x, y, z be the minimum x, y, z 
oordinates of EMS i;5 if BoxToPack �ts in EMS i of bin BIN then6 if x ≤ X∗ or
· (x = X∗ and z ≤ Z∗ ) or
· (x = X∗ and z = Z∗ and y ≤ Y ∗ ) then7 X∗ ← x, Z∗ ← z, Y ∗ ← y ;8 EMS ∗ = EMS i;9 end if10 end if11 end for12 return EMS ∗ // returns 0 if it was not possible
· to pa
k BoxToPack in bin BIN ;end BBLFigure 6. Pseudo-
ode of the Ba
k-Bottom-Left (BBL) pro
edure.

2.4. Parallel implementation. Parallelization applies only to the task that per-forms the evaluation of the 
hromosome �tness sin
e it is the most time 
onsuming.Sin
e the tasks related with the other steps of the GA 
onsume very little timethey are not parallelized. This type of parallelization is easy to implement andin multi-
ore CPUs allows for a large redu
tion in 
omputational times (almosta linear speed-up with the number of 
ores). The parallel implementation of ourheuristi
 was done using the OpenMP Appli
ation Program Interfa
e (API) whi
hsupports multi-platform shared-memory parallel programming in C/C++.3. Numeri
al experimentsWe next report on results obtained on a set of experiments 
ondu
ted to evaluatethe performan
e of the multi-population biased random-key geneti
 algorithm forthe bin pa
king problem (BRKGA-BPP) proposed in this paper.3.1. Ben
hmark algorithms. We 
ompare BRKGA-BPP with the six approa
heslisted in Table 1. These approa
hes are the most e�e
tive in the literature to date.
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edure PLACEMENT (BPS , VPH , VBO)// ** Initialization1 Let B be the set of open bins and NB the number of open bins;2 B ← {1}, NB ← 0;3 for i = 1, . . . , n do
· // ** Box sele
tion4 BoxToPack ← BPS i // sele
t the box in the ith position of BPS ;
· // ** Pla
ement Heuristi
 sele
tion5 PlaceHeur = VPH i;
· // ** Bin and Empty Maximal Spa
e sele
tion6 EMS ← 0, BinSelected ← 0;7 for k = 1, . . . ,NB do
· // try to pa
k box BoxToPack in a EMS of bin k using PlaceHeur ;8 if PlaceHeur = BBL then9 EMS ← BBL(BoxToPack , k);10 else if PlaceHeur = BLB then11 EMS ← BLB(BoxToPack , k);12 end if13 if EMS > 0 then // box is pa
kable in EMS of bin k;14 BinSelected ← k ;15 exit for // stop for 
y
le, go to 18;16 end if17 end for18 if BinSelected = 0 then // open a new empty bin;19 BinSelected ← NB + 1;20 B ← B ∪ {BinSelected};21 NB ← NB + 1;22 EMS ← 1; // pa
k BoxToPack at the origin of the new empty bin;23 end if
· // ** Box Orientation sele
tion24 Let BOs be a ve
tor with all the possible pa
kable orientations
· of box BoxToPack in EMS of bin BinSelected ;25 Let nBOs be number of box orientations in ve
tor BOs ;26 Let BO∗ = BOs (⌈VBOBoxToPack × nBOs⌉) be the box orientation
· sele
ted to pa
k BoxtoPack in EMS of bin BinSelected ;
· // ** Box pa
king27 Pa
k BoxToPack at the origin of maximal spa
e EMS

· of bin BinSelected using orientation BO
∗;

· // ** State Information update28 Update the list of EMSs of bin BinSelected using
· the DP pro
edure of Lai and Chan (1997);29 end forend PLACEMENTFigure 7. Pseudo-
ode for the PLACEMENT pro
edure.



12 J. F. GONÇALVES AND M.G.C. RESENDETable 1. E�
ient approa
hes used for 
omparison.Approa
h Sour
e of approa
h Type of methodTS3 Lodi et al. (1999) and Lodi et al.(2002) Tabu Sear
h (2D/3D)HBP Bos
hetti and Mingozzi (2003b) Heuristi
 (2D)GLS Faroe et al. (2003) Guided Lo
al Sear
h (2D/3D)SCH Mona
i and Toth (2006) Set Covering Based Heuristi
(2D)
TS

2
PACK Craini
 et al. (2009) Parallel Tabu Sear
h (3D)GVND Parreño et al. (2010) GRASP/VND (2D/3D)

3.2. Test problem instan
es. A standard ben
hmark set of 320 problems gener-ated by Martello et al. (2000) was used for testing the 3D bin pa
king algorithm.The instan
e generator is available at http://www.diku.dk/~pisinger/
odes.html.These instan
es are organized into 8 
lasses with 40 instan
es ea
h, 10 instan
es forea
h value of n ∈ {50, 100, 150, 200}. For Classes 1�5, the bin size is W = H =
D = 100 and there are �ve types of items whi
h have wj , hj, and dj uniformlyrandom a

ording to the intervals presented in Table 2. For Class k (k = 1, . . . , 5),ea
h item is of type k is 
hosen with probability 60%, and the other four types withprobability 10% ea
h. Classes 6�8 are as follows:Class 6: bin size W = H = D = 10; wj , hj , dj ∈ [1, 10];Class 7: bin size W = H = D = 40; wj , hj , dj ∈ [1, 35];Class 8: bin size W = H = D = 100; wj , hj , dj ∈ [1, 100].Table 2. Type 
hara
terization.Type 1: wj ∈

[

1, 1

2
W

], hj ∈
[

2

3
H, H

], dj ∈
[

2

3
D, D

];Type 2: wj ∈
[

2

3
W, 1

2
W

], hj ∈
[

1, 1

2
H
], dj ∈

[

2

3
D, D

];Type 3: wj ∈
[

2

3
W, 1

2
W

], hj ∈
[

2

3
H, H

], dj ∈
[

1, 1

2
D
];Type 4: wj ∈

[

1

2
W, W

], hj ∈
[

1

2
H, H

], dj ∈
[

1

2
D, D

];Type 5: wj ∈
[

1, 1

2
W

] , hj ∈
[

1, 1

2
H
], dj ∈

[

1, 1

2
D
].

For testing the 2D bin pa
king algorithm we used the following sets of instan
eswhi
h were also used to evaluate the other ben
hmark algorithms by their authors.

http://www.diku.dk/~pisinger/codes.html
http://www.diku.dk/~pisinger/codes.html.


BRKGA FOR 2D/3D BIN PACKING 13Table 3. Datasets used for testing the 2D bin pa
king algorithm.Class Des
riptionbwmv In
ludes 500 instan
es generated by Berkey and Wang (1987) and byMartello and Vigo (1998). These instan
es are divided into 10 
lasses whereea
h 
lass 
omprises 50 instan
es, 10 for ea
h value of
n ∈ {20, 40, 60, 80, 100}. All instan
es, and the 
orresponding best knownsolution values, are available athttp://www.or.deis.unibo.it/resear
h_pages/ORinstan
es/2BP.html .
g
ut Proposed by Christo�des and Whitlo
k (1977). Available from ORLIBlibrary.g
ut,ng
ut Proposed by Beasley (1985a;b) (these instan
es are two-dimensional 
uttingproblems that were transformed into 2D-BPP as des
ribed in Faroe et al.(2003)). Available from the ORLIB library.beng Proposed by Bengtsson (1982), available in Pa
kLib2(Fekete and van der Veen, 2007),http://mo.math.nat.tu-bs.de/pa
klib/index.html .3.3. GA 
on�guration. The 
on�guration of geneti
 algorithms is oftentimesmore an art form than a s
ien
e. In our past experien
e with geneti
 algorithmsbased on the same evolutionary strategy (see Gonçalves and Almeida (2002), Eri
sson et al.(2002), Gonçalves and Resende (2004), Gonçalves et al. (2005), Buriol et al. (2005),Buriol et al. (2007), Gonçalves (2007), Gonçalves et al. (2009), Gonçalves et al.(2009), Fontes and Gonçalves (2009) Gonçalves and Resende (2011a), Festa et al.(2010), Gonçalves and Resende (2011b), Gon
alves and Sousa (2011), Gonçalves et al.(2011), Silva et al. (2011), Gonçalves and Resende (2012a), Gonçalves and Resende(2012b)), we obtained good results with values of TOP, BOT, and CrossoverProbability(CProb) in the intervals shown in Table 4.Table 4. Range of parameters in past implementations.Parameter IntervalTOP 0.10 � 0.25BOT 0.15 � 030Crossover Probability (CProb) 0.70 � 0.80For the population size, we have obtained good results by indexing it to thedimension of the problem, i.e. we use small size populations for small problems andlarger populations for larger problems. With this in mind, we 
ondu
ted a smallpilot study to obtain a reasonable 
on�guration (sixteen 3D instan
es, two fromea
h 
lass with n = 200). We tested all the 
ombinations of the following values:

• TOP ∈ {0.10, 0.15, 0.20, 0.25}; BOT ∈ {0.15, 0.20, 0.25, 0.30}; CProb ∈
{0.70, 0.75, 0.80};
• Population size with 10, 20, 30, and 40 times the number of items in theproblem instan
e.For ea
h of the possible 
on�gurations, we made three independent runs of the al-gorithm (with three distin
t seeds for the random number generator) and 
omputed

http://www.or.deis.unibo.it/research_pages/ORinstances/2BP.html
http://www.or.deis.unibo.it/research_pages/ORinstances/2BP.html
http://mo.math.nat.tu-bs.de/packlib/index.html
http://mo.math.nat.tu-bs.de/packlib/index.html


14 J. F. GONÇALVES AND M.G.C. RESENDEthe average total value. The 
on�guration that minimized the sum, over the pilotproblem instan
es, was TOP = 10%, BOT = 15%, CProb = 0.7, and Populationsize = 30 times the number of boxes in the problem instan
e. After some experi-mentation with the problem instan
es in the pilot study we 
ame to the 
on
lusionthat using �ve parallel populations and ex
hanging information every 15 genera-tions was a reasonable 
on�guration for this type of problem. The 
on�gurationpresented in Table 5 was held 
onstant for all experiments and all problem in-stan
es. The 
omputational results presented in the next se
tion demonstrate thatthis 
on�guration not only provides ex
ellent results in terms of solution qualitybut is also very robust.Table 5. Con�guration of parameters for BRKGA-BPP.Parameter Value
p = 30 × n

pe = 0.10 × p

pm= 0.15 × p

ρe= 0.70Number of populations = 5Ex
hange information between pops = Every 15 generationsFitness = aNB = Adjusted Number of Bins (tominimize)Stopping Criterion = 300 generations3.4. Computational results. Algorithm BRKGA-BPP was implemented in C++and the 
omputational experiments were 
arried out on a 
omputer with a IntelCore i7-2630QM �2.0 GHz CPU running the Linux operating system (Fedora re-lease 16).As des
ribed above, BRKGA-BPP allows ea
h box to use, if possible, severalorientations (six orientations for the 3D and two orientations for the 2D ). However,the other ben
hmark algorithms only use one orientation. To make the 
omparisonfair we 
onstrained our algorithm (BRKGA-BPP) to use only the orientation thatthe other ben
hmark algorithms use. To show the potential of BRKGA-BPP whenall the box orientations are allowed we have also in
luded in the tables 
olumnswith header 6r and 2r whi
h 
orrespond to the results that BRKGA-BPP obtainswhen all rotations are allowed respe
tively for 3D and 2D instan
es (as expe
ted,the results are better).The 
omputational results 
orresponding to 3D instan
es are shown in Table 6,whi
h 
ompares the solutions obtained by BRKGA-BPP with the other ben
hmarkalgorithms referred in Table 1. Ea
h row of the table gives the average values forthe instan
es of ea
h 
lass-size. Column 4 shows L2, the 
orresponding lower boundobtained by Martello et al. (2000). Columns 5 to 8 
ontain details of the BRKGA-BPP: the 
olumn with header 6r represents the average best solution found whenall six rotations are allowed and the �tness fun
tion used is aNB ; the 
olumn withheader NB represents the average best solution found when no rotations are allowedand �tness fun
tion used is NB ; the 
olumn with header aNB represents the average



BRKGA FOR 2D/3D BIN PACKING 15best solution found when no rotations are allowed and �tness fun
tion used is aNB ;the 
olumn with header Time represents the average time to the best solution. Thelast four rows show the results, �rst for all 
lasses for a 
omplete 
omparison withTS3 and GVND and then for 
lasses 1, 4, 5, 6, 7, 8 whi
h allow the 
omparisonwith TS 2PACK and GLS .The results show that BRKGA-BPP 
onsistently equals or outperforms algo-rithms TS3,GVND, and GLS. In relation to algorithm TS 2PACK the results showthat BRKGA-BPP obtains better values for 13 sub
lasses, obtains equal valuesfor 9 sub
lasses, and obtains worst values for only 2 sub
lasses (4-100 and 8-100).The statisti
al analysis of the results using the Wil
oxon test for the mat
hed pairsBRKGA-BPP < TS3, BRKGA-BPP < GVND, BRKGA-BPP < TS2PACK, andBRKGA-BPP < GLS show that BRKGA-BPP is signi�
antly better than all theother algorithms obtaining, respe
tively, p-values of 0.00002045, 0.003482, 0.001068,and 0.0003597, for the paired 
omparisons.The 
omputational results 
orresponding to the 2D instan
es are shown in Ta-bles 7 and 8, whi
h 
ompare the solutions obtained by BRKGA-BPP with the otherben
hmark algorithms referred in Table 1. In Table 7 ea
h row gives the averagevalues for the instan
es of ea
h 
lass-size. Column 4 shows LB∗, the lower boundreported by Mona
i and Toth (2006), 
omputed by applying all the lower-boundingpro
edures from the literature and an exa
t algorithm for a long 
omputing time.Columns 5 to 8 
ontain details for BRKGA-BPP: the 
olumn with header 2r rep-resents the average best solution found when two rotations are allowed and the�tness fun
tion used is aNB ; the 
olumn with header NB represents the averagebest solution found when no rotations are allowed and�tness fun
tion used is NB ;the 
olumn with header aNB represents the average best solution found when norotations are allowed and �tness fun
tion used is aNB , the 
olumn with header
Time represents the average time to the best solution. The last �ve rows show theresults for a 
omplete 
omparison with GVND, SCH, GLS, TS3, and HBP. Table8, has the same stru
ture as Table 7 and 
ompares BRKGA-BPP with the otherben
hmark algorithms on a set of two-dimensional instan
es whi
h are well-knownin the literature. The results in Table 7 show that the BRKGA-BPP algorithm
onsistently equals or outperforms algorithms GVND, SCH, GLS, TS3, and HBPin all sub
lasses. The statisti
al analysis of the results using the Wil
oxon testfor the mat
hed pairs BRKGA-BPP < GVND, BRKGA-BPP < SCH, BRKGA-BPP < GLS, BRKGA-BPP < TS2PACK, and BRKGA-BPP < HBP show thatBRKGA-BPP is signi�
antly better than all the other algorithms obtaining, respe
-tively, p-values of 0.01007, 0.004305, 0.00001403, 0.00000008536, and 0.00003105 forthe paired 
omparisons. For the sub
lasses in Table 8 the BRKGA-BPP obtainsthe same values as GVND and GLS and outperforms SCH and TS3 in one of thesub
lasses.



16 J. F. GONÇALVES AND M.G.C. RESENDETable 6. Results for the three-dimensional instan
es.BRKGA-BPPClass Bin size n L2 6r NB aNB Time (s) TS3 GVND TS
2
PACK GLS1 100 Ö 100 Ö 100 50 12.5 11.5 13.4 13.4 2.1 13.4 13.4 13.4 13.4100 25.1 22.9 26.7 26.6 17.8 26.6 26.6 26.7 26.7150 34.7 32.0 36.6 36.3 45.2 36.7 36.4 37.0 37.0200 48.4 43.7 51.0 50.7 69.1 51.2 50.9 51.1 51.22 100 Ö 100 Ö 100 50 12.7 11.7 13.9 13.8 3.9 13.8 13.8 - -100 24.1 22.5 25.7 25.5 20.5 25.7 25.7 - -150 35.1 32.2 37.0 36.7 39.2 37.2 36.9 - -200 47.5 42.9 49.6 49.4 91.6 50.1 49.4 - -3 100 Ö 100 Ö 100 50 12.3 11.6 13.3 13.3 4.1 13.3 13.3 - -100 24.7 22.7 26.2 25.9 21.2 26.0 26.0 - -150 36.0 32.4 37.6 37.5 43.6 37.7 37.6 - -200 47.8 43.0 50.1 49.8 78.2 50.5 50.0 - -4 100 Ö 100 Ö 100 50 28.7 28.9 29.4 29.4 5.0 29.4 29.4 29.4 29.4100 57.6 58.4 59.0 59.0 26.4 59.0 59.0 58.9 59.0150 85.2 86.4 86.8 86.8 40.7 86.8 86.8 86.8 86.8200 116.3 118.3 118.8 118.8 60.3 118.8 118.8 118.8 119.05 100 Ö 100 Ö 100 50 7.3 7.5 8.3 8.3 6.9 8.4 8.3 8.3 8.3100 12.9 13.7 15.0 15.0 15.0 15.0 15.0 15.2 15.1150 17.4 18.5 20.1 19.9 33.7 20.4 20.1 20.1 20.2200 24.4 25.3 27.1 27.1 67.5 27.6 27.1 27.4 27.26 10 Ö 10 Ö 10 50 8.7 8.9 9.8 9.8 5.4 9.9 9.8 9.8 9.8100 17.5 17.9 19.0 18.8 25.9 19.1 19.0 19.1 19.1150 26.9 27.6 29.2 29.2 42.3 29.4 29.2 29.2 29.4200 35.0 35.5 37.2 37.2 75.0 37.7 37.4 37.7 37.77 40 Ö 40 Ö 40 50 6.3 6.4 7.4 7.4 6.5 7.5 7.4 7.4 7.4100 10.9 10.8 12.3 12.2 12.6 12.5 12.5 12.3 12.3150 13.7 13.7 15.5 15.2 27.2 16.1 16.0 15.8 15.8200 21.0 21.6 23.4 23.4 72.5 23.9 23.5 23.5 23.58 100 Ö 100 Ö 100 50 8.0 8.3 9.2 9.2 11.7 9.3 9.2 9.2 9.2100 17.5 17.5 18.9 18.9 21.4 18.9 18.9 18.8 18.9150 21.3 22.0 23.6 23.5 48.2 24.1 24.1 23.9 23.9200 26.7 27.5 29.4 29.2 64.0 30.3 29.8 30.0 29.9Total 
lasses 1, 4-8 6840 6848 7271 7253 7320 7286 7298 7302Total 
lasses 1-8 9242 9038 9805 9772 9863 9813Note: The best values for the versions with no rotation appear in bold.



BRKGA FOR 2D/3D BIN PACKING 17Table 7. Results for the two-dimensional instan
es. Part IBRKGA-BPP℄textitClass Bin size n LB∗ 2r NB aNB Time (s) GVND SCH GLS TS3 HBP1 10 Ö 10 20 7.1 6.6 7.1 7.1 0.0 7.1 7.1 7.1 7.1 7.140 13.4 12.8 13.4 13.4 0.1 13.4 13.4 13.4 13.5 13.460 19.7 19.5 20 20 0.9 20 20 20.1 20.1 20.180 27.4 27 27.5 27.5 0.2 27.5 27.5 27.5 28.2 27.5100 31.7 31.3 31.7 31.7 3.3 31.7 31.7 32.1 32.6 31.82 30 Ö 30 20 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.040 1.9 1.9 1.9 1.9 0.1 1.9 1.9 1.9 2.0 1.960 2.5 2.5 2.5 2.5 0.1 2.5 2.5 2.5 2.7 2.580 3.1 3.1 3.1 3.1 0.7 3.1 3.1 3.1 3.3 3.1100 3.9 3.9 3.9 3.9 0.5 3.9 3.9 3.9 4.0 3.93 40 Ö 40 20 5.1 4.7 5.1 5.1 0.1 5.1 5.1 5.1 5.5 5.140 9.2 9.2 9.4 9.4 0.9 9.4 9.4 9.4 9.7 9.560 13.6 13.4 13.9 13.9 2.9 13.9 13.9 14.0 14.0 14.080 18.7 18.2 18.9 18.9 3.3 18.9 18.9 19.1 19.8 19.1100 22.1 22 22.3 22.3 3.7 22.3 22.3 22.6 23.6 22.64 100 Ö 100 20 1.0 1.0 1.0 1.0 0.2 1.0 1.0 1.0 1.0 1.040 1.9 1.9 1.9 1.9 0.5 1.9 1.9 1.9 1.9 1.960 2.3 2.3 2.5 2.5 2.3 2.5 2.5 2.5 2.6 2.580 3 3.1 3.1 3.1 1.2 3.1 3.2 3.3 3.3 3.3100 3.7 3.7 3.8 3.7 1.1 3.8 3.8 3.8 4.0 3.85 100 Ö 100 20 6.5 5.9 6.5 6.5 0.2 6.5 6.5 6.5 6.6 6.540 11.9 11.4 11.9 11.9 0.5 11.9 11.9 11.9 11.9 11.960 17.9 17.2 18 18 2.7 18 18 18.1 18.2 1880 24.1 23.9 24.7 24.7 6.3 24.7 24.7 24.9 25.1 24.8100 27.9 27.7 28.2 28.1 3.4 28.2 28.2 28.8 29.5 28.76 300 Ö 300 20 1.0 1.0 1.0 1.0 0.2 1.0 1.0 1.0 1.0 1.040 1.5 1.6 1.7 1.6 3.5 1.7 1.7 1.8 1.9 1.860 2.1 2.1 2.1 2.1 1.2 2.1 2.1 2.2 2.2 2.180 3.0 3.0 3.0 3.0 2.3 3.0 3.0 3.0 3.0 3.0100 3.2 3.2 3.4 3.3 3.1 3.4 3.4 3.4 3.4 3.47 100 Ö 100 20 5.5 5.2 5.5 5.5 0.1 5.5 5.5 5.5 5.5 5.540 10.9 10.2 11.1 11.1 0.4 11.1 11.1 11.3 11.4 11.160 15.6 14.6 15.9 15.8 3.1 15.9 15.8 15.9 16.2 16.080 22.4 20.8 23.2 23.2 7.9 23.2 23.2 23.2 23.2 23.2100 26.9 25 27.1 27.1 4.0 27.1 27.1 27.5 27.7 27.48 100 Ö 100 20 5.8 5.3 5.8 5.8 0.1 5.8 5.8 5.8 5.8 5.840 11.2 10.3 11.3 11.3 0.7 11.3 11.3 11.4 11.4 11.360 15.9 14.7 16.1 16.1 3.6 16.1 16.2 16.3 16.2 16.280 22.3 20.4 22.4 22.4 2.3 22.4 22.4 22.5 22.6 22.6100 27.4 25.2 27.8 27.8 4.5 27.8 27.9 28.1 28.4 28.09 100 Ö 100 20 14.3 14.3 14.3 14.3 0.1 14.3 14.3 14.3 14.3 14.340 27.8 27.5 27.8 27.8 0.4 27.8 27.8 27.8 27.8 27.860 43.7 43.5 43.7 43.7 0.9 43.7 43.7 43.7 43.8 43.780 57.7 57.3 57.7 57.7 1.7 57.7 57.7 57.7 57.7 57.7100 69.5 69.3 69.5 69.5 2.8 69.5 69.5 69.5 69.5 69.510 100 Ö 100 20 4.2 4.1 4.2 4.2 1.0 4.2 4.2 4.2 4.3 4.340 7.4 7.2 7.4 7.4 0.4 7.4 7.4 7.4 7.5 7.460 9.8 9.9 10.0 10.0 3.2 10.0 10.1 10.2 10.4 10.280 12.3 12.5 12.9 12.8 8.1 12.9 12.8 13.0 13.0 13.0100 15.3 15.4 15.9 15.8 7.9 15.9 15.9 16.2 16.6 16.2Total 
lasses 1-10 7173 6988 7241 7234 7241 7243 7284 7360 7275Note: The best values for the versions with no rotation appear in bold.



18 J. F. GONÇALVES AND M.G.C. RESENDEThe performan
e of the novel �tness measure (adjusted number of bins, or aNB),in relation to the the usual number of bins, NB, is also demonstrated in Tables 6and 7 where aNB produ
es better results than NB for 16 3D-sub
lasses and for4 2D-sub
lasses. Overall the use of aNB instead of NB redu
ed the total numberof bins from 9803 to 9772 for the 3D instan
es and from 7241 to 7234 for the 2Dinstan
es.In terms of 
omputational times we 
annot make any fair and meaningful 
om-ments sin
e all the other approa
hes were implemented and tested on 
omputerswith di�erent 
omputing power. Instead, we limit ourselves to reporting the averagerunning times approa
hes.Table 8. Results for the two-dimensional instan
es. Part IIBRKGA-BPPClass n Instan
es LB∗

2r NB aNB Time (s) GVND SCH GLS TS3
g
ut 16-62 3 9 7.33 9 9 1.66 9 9 9 9g
ut 10-50 13 8 7.31 8 8 0.25 8 8 8 8.31ng
ut 7-22 12 2.67 2.5 2.67 2.67 0.01 2.67 2.67 2.67 3beng 1-8 20-120 8 6.75 6.75 6.75 6.75 0.19 6.75 6.88beng 9-10 160-200 2 6.5 6.5 6.5 6.5 1.24 6.5Note: The best values for the versions with no rotation appear in bold.4. Con
luding remarksIn this paper we addressed the three-dimensional bin pa
king problem whi
h
onsists in pa
king, with no overlap, a set of three-dimensional re
tangular shapedboxes into the minimum number of three-dimensional re
tangular shaped bins.All the bins have identi
al known dimensions and ea
h box i is has dimensions
(di, wi, hi) for i = 1, . . . , n. It is assumed that the boxes 
an be rotated.A novel multi-population biased random-key geneti
 algorithm (BRKGA) forthe 2D-BPP and 3D-BPP was developed. The approa
h uses a maximal-spa
erepresentation to manage the free spa
es in the bins (Lai and Chan, 1997). Theproposed algorithm hybridizes a novel pla
ement pro
edure with a multi-populationgeneti
 algorithm based on random keys. The BRKGA is used to evolve the order inwhi
h the boxes are pa
ked into the bins and the parameters used by the pla
ementpro
edure. Two heuristi
 pro
edures, Ba
k-Bottom-Left and the Ba
k-Left-Bottom,are used to determine the bin and the free maximal spa
e where ea
h box is pla
ed.A novel �tness fun
tion that improves signi�
antly the solutions quality is alsodeveloped.The new approa
h is extensively tested on 858 problem instan
es. The 
omputa-tional experiments demonstrate not only that the approa
h performs extremely wellbut that it obtains the best overall results when 
ompared with other approa
hespublished in the literature. It redu
ed the total number of bins used from 9803 to9772 for the 3D instan
es and from 7241 to 7234 for the 2D instan
es.Referen
esJ.C. Bean. Geneti
 algorithms and random keys for sequen
ing and optimization.ORSA J. on Computing, 6:154�160, 1994.
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