
A biased random-key genetic algorithm for the

Minimization of Open Stacks Problem ∗

José Fernando Gonçalves
LIAAD, INESC TEC, Faculdade de Economia do Porto, Universidade do Porto

Rua Dr. Roberto Frias, s/n, 4200-464 Porto, Portugal

jfgoncal@fep.up.pt

Mauricio G. C. Resende
AT&T Labs Research,

180 Park Avenue, Room C241, Florham Park, NJ 07932 USA

mgcr@research.att.com

Miguel Dias Costa
Faculdade de Economia do Porto, Universidade do Porto

Rua Dr. Roberto Frias, s/n, 4200-464 Porto, Portugal

migueldiascosta@gmail.com

This paper describes a biased random-key genetic algorithm (BRKGA) for the
Minimization of Open Stacks Problem (MOSP). The MOSP arises in a production
system scenario, and consists of determining a sequence of cutting patterns that
minimizes the maximum number of opened stacks during the cutting process. The
approach proposed combines a BRKGA and a local search procedure for generating
the sequence of cut patterns. A novel fitness function for evaluating the quality of
the solutions is also developed. Computational tests are presented using available in-
stances taken from the literature. The high-quality of the solutions obtained validate
the proposed approach.

Keywords: Minimization of Open Stacks Problem, Cutting Pattern, Biased Random-
Key Genetic Algorithm; Random keys.

1 Introduction
Cutting stock problems consist in cutting smaller pieces (items) from larger pieces (objects)
and arise in many industrial production scenarios, such as the furniture, paper, steel and wood
hardboard industries. In the solution of cutting stock problems we seek to minimize waste or

∗ Ssupported by funds granted by the ERDF through the Programme COMPETE and by the Portuguese
Government through FCT - Foundation for Science and Technology, project PTDC/EGE-GES/117692/2010.
AT&T Labs Research Technical Report.
Date: 2013-06-27.

1

maximize profit through the selection of a set of good cutting patterns. However, in certain
cases it is also important to determine the sequence in which the set of cutting patterns should
be processed so as to minimize the maximum stack of partially cut orders. A cutting stock
solution defines a set of cutting patterns and the number of times the patterns have to be cut
to satisfy the demand for the items. When the patterns are cut, the items cut are piled up in
stacks, one stack for each item type. The first time an item type is cut a stack is considered
open. It remains open until the last piece of the corresponding item type is cut. A stack is
closed when the last piece of an item type is cut. Because of space availability or of equipment
limitations, which may force some stacks to be removed to free up space for the new stacks,
it is desirable to maintain a small number of open stacks during the cutting process. Closed
stacks can be moved to another location or can be delivered to clients. If removed, open stacks
must be later returned so that work can be completed. This is inefficient since it takes time
and uses scarce resources. To avoid the inefficiencies caused by the removal and later return of
open stacks, it is important to determine the optimal cutting order of the patterns such that
the maximum number of open stacks during the cutting process is minimized. This problem is
known as the Minimization of Open Stacks Problem (MOSP).
To illustrate the MOSP, we use an example problem with five item types and four patterns.

This problem is detailed in Table 1.

Table 1: Data for illustrative example MOSP.

Items Patterns containing items

A 1, 3
B 1, 2, 4
C 1, 2
D 3
E 2, 4

Yanasse and Senne (2010) define MOSP as follows: Let M be a Boolean matrix where each
row corresponds to an item type and each column corresponds to a cutting pattern. Each entry
of Mi,k (with i = 1, . . . , n and k = 1, . . . ,m) equals 1 if and only if at least one item of type i is
contained in patternk. Let M1

s be the resulting matrix corresponding to the permutation s of
the columns of M such that in any row of M1

s each 0 entry between two 1 entries are replaced
by a 1. Figure 1 depicts matrices M and M1 corresponding to the permutation s = (1, 2, 3, 4)
for the example presented in Table 1.

Patterns

1 2 3 4

Items

A 1 0 1 0

B 1 1 0 1

C 1 1 0 0

D 0 0 1 0

E 0 1 0 1

Patterns

1 2 3 4

Items

A 1 1 1 0

B 1 1 1 1

C 1 1 0 0

D 0 0 1 0

E 0 1 1 1

Op. Stacks 3 4 4 2

a) - M b) - M1

Figure 1: M and M1 corresponding to permutation s = (1, 2, 3, 4) for the example of Table 1.

2

The objective of MOSP is to find a permutation s∗ of the columns, such that the maximum
number of 1 entries in any column of matrixM1

s∗ is minimized. Figure 1 depicts the best solution
for the example. It corresponds to the permutation s = (3, 1, 2, 4) and has a MOSP value of
three.

Patterns

3 1 2 4

Items

A 1 1 0 0

B 0 1 1 1

C 0 1 1 0

D 1 0 0 0

E 0 0 1 1

Op. Stacks 2 3 3 2

Figure 2: M1 corresponding to the best permutation s = (3, 1, 2, 4) for the example in Table 1.

Though the interest by the operations research community in the MOSP increased after the
realization of the 2005 Constraint Modeling Challenge in the Fifth Workshop on Modelling and
Solving Problems with Constraints, which focused on the MOSP, the number of publications on
this problem is still not extensive.
The special case of MOSP where there are at most two different item types per pattern

was considered by Lins (1989). While trying to solve a problem faced by the Australian glass
industry Yuen (1991; 1995) developed six simple heuristics for the MOSP. The third heuristic
(called XXX) was considered the most efficient in computational tests. Yuen and Richardson
(1995) proposed the simple lower bound for the MOSP of the maximum number of different item
types in the patterns and an exact method that enumerates permutations of pattern sequences.
The new lower bound and the upper bounds provided by the heuristics of Yuen (1991; 1995)
were used to reduce the search space for the exact method. Yanasse (1996) proposes polynomial-
time algorithms for MOSP instances with special topologies. Yanasse (1997b), Limeira (1998)
and Yanasse and Limeira (2004) propose branch and bound algorithms to solve the MOSP.
Yanasse (1997a) defines the MOSP as a graph problem and shows that any MOSP instance
corresponding to the same MOSP graph are equivalent. Faggioli and Bentivoglio (1998) develop
a mathematical formulation for the MOSP and a solution method involving three phases. The
first phase finds a good solution with a greedy heuristic similar to some of the heuristics of Yuen
(1995). The second phase improves the solution obtained in the first phase using a tabu search.
The third phase uses an implicit enumeration scheme of the permutations of patterns. Yanasse
et al. (1999) and Becceneri (1999) propose arc contraction heuristics. A new lower bound for
the optimal value of the MOSP is presented in Yanasse et al. (1999). Becceneri (1999) proposed
the least-cost node heuristic for the MOSP which was later modified in Becceneri et al. (2004).
Metaheuristic-based heuristics have also been used to solve the MOSP. A simulated annealing

heuristic is proposed in Linhares et al. (1999) and simulated annealing and tabu search are used
in Fink and Voß (1999). A constructive genetic algorithm is proposed in Oliveira and Lorena
(2002). Yanasse et al. (2007) proposed exact and heuristic methods using properties of the
solution of MOSP to establish partial orders in which the nodes in the graph should be closed.
An adaptive genetic algorithm for large-size open stack problems is presented in De Giovanni
et al. (2010) and De Giovanni et al. (2013)
Dynamic-programming solutions to MOSP were developed by Banda and Stuckey (2007) and

Chu and Stuckey (2009) where the search was simplified through the use of the properties
presented in Becceneri et al. (2004) and Yuen and Richardson (1995).
Problems equivalent to the MOSP can arise in completely different contexts such as VLSI

design (the gate matrix layout problem, the one dimensional logic, and PLA folding) and graph
3

theory (interval thickness, node search game, edge search game, graph path-width, narrowness,
split bandwidth, edge separation, and vertex separation). See Linhares and Yanasse (2002) and
Möhring (1990).
Yanasse and Senne (2010) presents a review of some properties and their use in pre-processing

operations for the MOSP.
The MOSP is known to be NP-hard (Linhares and Yanasse, 2002). Therefore, when large

instances are considered, heuristics are often the methods of choice. In this paper, we present a
novel biased random-key genetic algorithm (BRKGA) for the MOSP. The proposed algorithm
hybridizes a local search procedure with a genetic algorithm based on random keys. The BRKGA
is used to evolve the order in which the patterns are inserted in a partial solution. To evaluate
the quality of the solutions a novel fitness function is also developed.
The remainder of the paper is organized as follows. In Section 2 we introduce the new

approach, describing in detail the BRKGA, the local search procedure, and the novel fitness
function. Finally, in Section 3, we report on computational experiments, and in Section 4 make
concluding remarks.

2 Biased random-key genetic algorithm
In this section we present an overview of the proposed solution process. This is followed by
a discussion of the biased random-key genetic algorithm, including detailed descriptions of the
solution encoding and decoding, evolutionary process, fitness function, and parallel implemen-
tation.

2.1 Overview
The new approach is based on a constructive heuristic algorithm which inserts patterns, one
at a time, in a partial pattern sequence for the problem. Once all the patterns are inserted,
a solution is obtained. The new approach proposed in this paper combines a biased random-
key genetic algorithm, a local search procedure, and a novel fitness function. The role of the
genetic algorithm is to evolve the encoded solutions, or chromosomes, which represent the pattern
insertion sequence (PIS). For each chromosome, the following phases are applied to decode the
chromosome:

1. Decoding of the pattern insertion sequence: This first phase decodes the chromosome into
the PIS, i.e. the sequence in which the pattern are inserted into the partial pattern
sequence.

2. Construction of a solution: The second phase makes use of the PIS defined in phase 1 and
a local search procedure to construct a pattern sequence solution.

3. Chromosome Adjustment: The third phase adjusts the genes of the chromosome to reflect
the changes made in phase 2.

4. Fitness evaluation: The final phase computes the fitness of the solution (or measure of
quality of the solution). For this phase we developed a novel measure of fitness which
significantly improves the quality of the solutions.

Figure 3 illustrates the sequence of decoding steps applied to each chromosome generated by
the BRKGA.

The remainder of this section describes in detail the genetic algorithm, the decoding procedure,
the local search, and the adjustment procedure.

4

Construction of solution using PIS

and a Local Search Procedure

Solution

Builder

Phase

Feedback Quality of the Chromosome

(MOSP)E
v
o

lu
ti

o
n

a
ry

 P
ro

c
e

s
s

 o
f

th
e

 G
e

n
e

ti
c

 A
lg

o
ri

th
m

Adjustment of Chromosome Genes
Chromosome

Adjustment

Decoding

of Genes

Chromosome

Decoding of

Pattern Insertion Sequence (PIS)

Figure 3: Architecture of the algorithm.

2.2 Biased random-key genetic algorithm
Random-key genetic algorithms (RKGA) or genetic algorithms with random keys were intro-
duced in Bean (1994) for solving sequencing or optimization problems whose solutions can be
represented as permutations. In a RKGA, chromosomes are represented as vectors of randomly
generated real numbers in the interval [0, 1]. A deterministic algorithm, the decoder, takes as
input a chromosome and associates with it a solution of the combinatorial optimization problem
for which an objective value or fitness can be computed.
Random key GAs are particularly attractive for sequencing problems and/or when the chro-

mosomes have several parts (see for example Gonçalves and Almeida (2002), Gonçalves and
Resende (2004), Gonçalves et al. (2005), GonÃ§alves et al. (2009), Goncalves and Sousa (2011),
Gonçalves and Resende (2012), Gonçalves and Resende (2013), and Morán-Mirabal et al. (2013).
Unlike traditional GAs, which need to use special repair procedures to handle permutations or
sequences, RKGAs move all the feasibility issues into the objective evaluation procedure and
guarantee that all offspring formed by crossover are feasible solutions. When the chromosomes
have several parts, traditional GAs need to use different genetic operators for each part. How-
ever, since RKGAs use the parametrized uniform crossover of Spears and Dejong (1991)(instead
of the traditional one-point or two-point crossover), they do not need to have different genetic
operators for each part.
ARKGA evolves a population of random-key vectors over a number of generations (iterations).

The initial population is made up of p vectors of r random keys. Each component of the solution
vector, or random key, is generated independently at random in the real interval [0, 1]. After
the fitness of each individual is computed by the decoder in generation g, the population is
partitioned into two groups of individuals: a small group of pe elite individuals, i.e. those
with the best fitness values, and the remaining set of p − pe non-elite individuals. To evolve a
population g, a new generation of individuals is produced. All elite individual of the population
of generation g are copied without modification to the population of generation g + 1. RKGAs
implement mutation by introducing mutants into the population. A mutant is a vector of
random keys generated in the same way that an element of the initial population is generated.
At each generation, a small number pm of mutants is introduced into the population. With
pe + pm individuals accounted for in population g + 1, p − pe − pm additional individuals need
to be generated to complete the p individuals that make up population g + 1. This is done by
producing p− pe − pm offspring solutions through the process of mating or crossover.
A biased random-key genetic algorithm, or BRKGA (Gonçalves and Resende, 2011), differs

from a RKGA in the way parents are selected for mating. While in the RKGA of Bean (1994)

5

both parents are selected at random from the entire current population, in a BRKGAs each
element is generated combining a parent selected at random from the elite partition in the
current population and one is selected at random from the rest of the population. Repetition
in the selection of a mate is allowed and therefore an individual can produce more than one
offspring in the same generation. As in RKGAs, parameterized uniform crossover is used to
implement mating in BRKGAs. Let ρe be the probability that the vector component of an elite
parent is inherited by the offspring. For i = 1, . . . , r, the i-th component c(i) of the offspring
vector c takes on the value of the i-th component e(i) of the elite parent e with probability ρe

and the value of the i-th component ē(i) of the non-elite parent ē with probability 1 − ρe.
When the next population is complete, the corresponding fitness values are computed for all of

the newly created random-key vectors and the population is partitioned into elite and non-elite
individuals to start a new generation.
A BRKGA searches the solution space of the combinatorial optimization problem indirectly

by searching the r-dimensional continuous hypercube, using the decoder to map solutions in the
hypercube to solutions in the solution space of the combinatorial optimization problem where
the fitness is evaluated.
To specify a biased random-key genetic algorithm, we simply need to specify how solutions

are encoded and decoded and how their corresponding fitness values are computed. We specify
our algorithm next by first showing how the solutions of a MOSP are encoded and then decoded
and how their fitness evaluation is computed.

2.2.1 Chromosome representation and decoding

A chromosome encodes a solution to the problem as a vector of random keys. In a direct rep-
resentation, a chromosome represents a solution of the original problem, and is called genotype,
while in an indirect representation it does not and special procedures are needed to obtain from
it a solution called a phenotype. In the present context, the solutions will be represented indi-
rectly by parameters that are later used by a decoding procedure to obtain a solution. To obtain
the solution (phenotype) we use the decoding procedures described in Section 2.2.2.
In this paper, a solution to the MOSP is represented indirectly by the following chromosome

structure:

chromosome = (gene1, . . . , genem) ,

where m is the number of patterns. The decoding (mapping) of the m genes of each chromosome
into a pattern insertion sequence (PIS), that will be used by the solution builder (see Section
2.2.2) is accomplished by sorting the patterns in ascending order of the corresponding gene
values. Figure 4 shows an example of the decoding process for the PIS. In this example there
are eight patterns. The sorted genes correspond to the PIS = (5, 8, 3, 1, 4, 2, 6, 7).

Unordered patterns

Unsorted genes

Pattern Insertion Sequence (PIS)

Sorted genes

4

0.49

7

0.87

2

0.67

8

0.17

1

0.45

3

0.35

1

0.45

2

0.67

3

0.35

4

0.49

5

0.07

6

0.78

7

0.87

8

0.17

5

0.07

6

0.78

Pattern Insertion Sequence (PIS)

Figure 4: Decoding of the Pattern Insertion Sequence (PIS).

6

2.2.2 Solution builder

The solution builder follows a sequential process that inserts patterns into a partial solution,
one pattern at each stage. The order in which the patterns are inserted into the partial solution
is defined by the PIS evolved by the BRKGA. Each stage is comprised of the following two
main steps:

1. Selection of pattern to be inserted;

2. Selection of the insertion position in the partial solution of the pattern selected in step 1)
;

The pattern selected for insertion at each stage j is given by PISj . The position in the partial
solution where pattern PISj will be inserted is defined by a local search procedure. Let mj be
the number of patterns already in the partial solution at stage j. Then the local search procedure
considers the insertion of pattern PISj before all existing patterns in positions l = 1, . . . , j − 1
and after the pattern in position j − 1. The insertion position l∗j , corresponding to the smallest
value of MOSP is selected as the insertion position. Pattern PISj is inserted at position l∗j and
the process is repeated until all the patterns are inserted.

2.2.3 Chromosome Adjustment

Solutions produced by the local search procedure usually disagree with the genes initially sup-
plied to the decoder to obtain the PIS. Changes in the order of the patterns made by the local
search phase of the decoder need to be taken into account in the chromosome. The heuristic
adjusts the chromosome to reflect these changes. To make the chromosome supplied by the GA
agree with the solution produced by local search, the heuristic adjusts the order of the genes
according to the position of each pattern in the final solution. This chromosome adjustment not
only improves the quality of the solutions but also reduces the number of generations needed to
obtain the best values.

2.2.4 Fitness function

The evolutionary process requires a measure of solution fitness, or quality measure. A natural
fitness function for the MOSP is the maximum number of open stacks MOSP , in a solution.
However, since different solutions can have the same MOSP value, this measure does not dif-
ferentiate well the potential for improvement of solutions having the same MOSP value.
To better differentiate the potential for improvement we propose a new measure of fitness

which we call modified maximum number of open stacks, or simply MMOSP . The MMOSP
combinesMOSP with a measure of the potential for improvement of a solution which has values
in the interval]0, 1]. The rationale for this new measure is that if we have two solutions that
have the same MOSP value, then the one having the smallest average number of open stacks
will have more potential for improvement.
Let MOSPK be the number of open stacks when pattern k is being cut. Let

1
m

m∑
k=1

MOSPk

be the average number of open stacks. Then, the value of the modified maximum number of
open stacks, MMOSP , is given by

MMOSP = MOSP +

m∑
k=1

MOSPk

m×MOSP
.

The computational results in Section 3 show that this novel measure of fitness significantly
improves the quality of the solutions. Figure 5a and 5b examplify the calculation of MMOSP
for two solutions having aMOSP value equal to 4. The first solution (Figure 5a) has aMMOSP
equal to 4.8125 and the second solution (Figure 5b) has a MMOSP value of 4.75.

7

Patterns
2 1 4 3

Items

A 0 1 1 1

B 1 1 1 0

C 1 1 0 0

a) - M1 for s = (1, 2, 3, 4) b) - M1 for s = (2, 1, 4, 3)

Patterns
1 2 3 4

Items

A 1 1 1 0

B 1 1 1 1

C 1 1 0 0

D 0 0 0 1

E 1 1 1 0

Op. Stacks 3 4 3 2

D 0 0 1 0

E 0 1 1 1

Op. Stacks 3 4 4 2

MMOSP = MOSP + (3+4+4+2) / (4×4)
= 4.8125

MMOSP = MOSP + (3+4+3+2) / (4×4)
= 4.75

Figure 5: Example of the calculation of MMOSP .

3 Experimental results
In this section we report on results obtained on a set of experiments conducted to evaluate the
performance of the biased random key genetic algorithm for MOSP (BRKGA-MOSP) proposed
in this paper.

3.1 Benchmark algorithms
We compare BRKGA-MOSP with the approaches listed in Table 2. These are, to date, the most
effective approaches found in the literature.

Table 2: Efficient approaches used for comparison.

Approach Type of method Source of approach
GHP Greedy heuristic procedure Faggioli and Bentivoglio (1998)
TS Tabu search Faggioli and Bentivoglio (1998)
GLS Generalized local search Faggioli and Bentivoglio (1998)
YUEN-3 and
YUEN-5

Heuristics Yuen (1995)

DP1 Dynamic programming Banda and Stuckey (2007)
DP2 Dynamic programming Chu and Stuckey (2009)
CGA Constructive Genetic Algorithm, Oliveira and Lorena (2002)
PMA Parallel Memetic Algorithm Mendes and Linhares (2004)
ECS Evolutionary Clustering Search Oliveira and Lorena (2006)
GRACS Greedy Randomized Adaptive

Clustering Search
Oliveira and Lorena (2006)

AGA Adaptive Genetic Algorithm De Giovanni et al. (2010) and
De Giovanni et al. (2013)

3.2 Test problem instances
In the computational tests we used the instances described in Table 3

8

Table 3: Benchmark instances used in the computational tests.

Class Description Source

Harvey 2130 random instances by Harvey. Three
benchmarks are proposed (denoted “wbo”,
“wbop”, and “wbp”), each containing 10 classes ;

Smith and Gent (2005)

Simonis 3630 random instances by Simonis, grouped in
10 classes;

Smith and Gent (2005)

Shaw one class of 25 random instances by Shaw, with
20 patterns and item types; .

Smith and Gent (2005)

Miller and Wilson 21 individual instances, one provided by Miller
and 20 by Wilson (denoted GP 1–8, NWRS 1–8,
SP 1–4);

Smith and Gent (2005)

Faggioli and
Bentivoglio

300 random instances with n = 10, 20, 30, 40, 50
and m = 10, 15, 20, 25, 30, 40. Each of the n × m

combinations was replicated 10 times.

Faggioli and Bentivoglio (1998)

VLSI 11 individual instances from the VLSI industry ; Hu and Chen (1990)

SCOOP 24 real instances from two woodcutting
companies (denoted “A” and “B”)

available from
http://www.scoop-project.net.

3.3 GA configuration
The configuration of genetic algorithms is oftentimes more an art form than a science. In our
past experience with genetic algorithms based on the same evolutionary strategy (see Gonçalves
et al. (2005), GonÃ§alves et al. (2009), GonÃ§alves et al. (2011), Gonçalves and Resende (2012),
and Gonçalves and Resende (2013)), we obtained good results with values of TOP , BOT , and
CrossoverProbability (CProb) in the intervals shown in Table 4.

Table 4: Range of Parameters in past implementations.

Parameter Interval
TOP 0.10 - 0.25
BOT 0.15 - 0.30

Crossover Probability (CProb) 0.70 - 0.80

For the population size, we obtained good results by indexing it to the dimension of the
problem, i.e. we used small size populations for small problems and larger populations for larger
problems. The configuration presented in Table 5 was held constant for all experiments and all
problem instances. The computational results presented in the next section demonstrate that
this configuration not only provides excellent results in terms of solution quality but is also very
robust.

9

Table 5: Configuration parameters for the BRKGA−MOSP algorithm.

Parameter Value
p = 10 ×m

pe = min(0.25 × p,50)
pm= 0.20 × p
ρe= 0.70

Fitness = MMOSP = Modified MOSP (to
minimize)

Stopping Criterion = 100 generations

3.4 Computational results
Algorithm BRKGA was implemented in C++ and the experiments were carried out on a com-
puter with a Intel Core i7-2630QM @2.0 GHZ CPU running the Linux operating system with
Fedora release 16.
Before running the BRKGA we applied a pre-processing step to each instance as described in

Becceneri et al. (2004).
Due to the non-deterministic nature of BRKGA, 10 runs have been considered for each in-

stance, and best results are used for comparison. Tables 6-11 present the results obtained for the
various instance classes (6141 instances) by the BRKGA and some of the other approaches. In
the tables each row is associated with a class of aggregated instances or an individual instance.
The first columns define instance name and size, optimal values, etc. The columns denoted by
MOSP represent the best MOSP found by the corresponding approach. In terms of computa-
tional times, we cannot make any fair and meaningful comment since all the other approaches
were implemented with different programming languages and tested on computers with differ-
ent computing power. Hence, to avoid discussion about the different computers speed used in
the tests, we limit ourselves to reporting the average running times per run for BRKGA, while
for each of the other algorithms we only report, when available, the reported running times.
When available the columns with header T (s) represent the running time of the corresponding
approaches, in seconds.
BRKGA dominates all other approaches with respect to the quality of the solution and is very

competitive in terms of running time. MOSP always finds the optimal or best known solution
of MOSP in reasonable running time (often negligible), while the computational effort as well
as the quality of the solutions of DP1 degrade with large size instances SP3 and SP4. DP2
overcomes this issue and solves instances SP2, SP3, and SP4 very quickly. For most of the
instances, the BRKGA obtains the best solution before the tenth generation.

10

Table 6: Computational results: Harvey, Simonis and Shaw benchmarks (aggregate results).

I P BRKGA AGA DP1
n m Elements MOSP T(s) MOSP T(s) MOSP T(s)

Simonis 10 10 550 8.0 0.00 8.0 0.00 8.0 0.00
10 20 550 8.9 0.00 8.9 0.01 8.9 0.00
15 15 550 12.9 0.00 12.9 0.02 12.9 0.00
15 30 550 14.0 0.00 14.0 0.10 14.0 0.00
20 10 220 15.9 0.00 15.9 0.03 15.9 0.00
20 20 550 18.0 0.00 18.0 0.11 18.0 0.01
30 10 220 24.0 0.00 24.0 0.05 24.0 0.00
30 15 110 26.0 0.00 26.0 0.11 26.0 0.01
30 30 220 28.3 1.30 28.3 0.61 28.3 0.72
40 20 110 36.4 0.43 36.4 0.33 36.4 0.10

Shaw 20 20 25 13.7 0.00 13.7 0.34 13.7 0.01
wbo 10 10 40 5.9 0.00 5.9 0.00 5.9 0.00

10 20 40 7.4 0.00 7.4 0.02 7.4 0.00
10 30 40 8.2 0.00 8.2 0.08 8.2 0.00
15 15 60 9.4 0.00 9.4 0.06 9.4 0.00
15 30 60 11.6 0.00 11.6 0.39 11.6 0.03
20 10 70 12.9 0.00 12.9 0.04 12.9 0.00
20 20 90 13.7 0.00 13.7 0.22 13.7 0.01
30 10 100 20.1 0.00 20.1 0.08 20.1 0.00
30 15 120 21.0 0.00 21 0.18 21.0 0.01
30 30 140 22.6 1.08 22.6 1.11 22.6 1.11

wbop 10 10 40 6.8 0.00 6.8 0.00 6.8 0.00
10 20 40 8.1 0.00 8.1 0.04 8.1 0.00
10 30 40 8.6 0.00 8.6 0.06 8.6 0.00
15 15 60 10.4 0.00 10.4 0.05 10.4 0.00
15 30 60 12.2 0.00 12.2 0.34 12.2 0.02
20 10 40 14.3 0.00 14.3 0.02 14.3 0.00
20 20 90 14.9 0.00 14.9 0.15 14.9 0.01
30 10 40 22.5 0.00 22.5 0.05 22.5 0.00
30 15 60 22.4 0.00 22.4 0.13 22.4 0.01
30 30 140 23.8 0.00 23.9 0.95 23.8 0.99

wbp 10 10 40 7.3 0.00 7.3 0.00 7.3 0.00
10 20 70 8.7 0.00 8.7 0.02 8.7 0.00
10 30 100 9.3 0.00 9.3 0.03 9.3 0.00
15 15 60 11.1 0.00 11.1 0.04 11.1 0.00
15 30 120 13.1 0.00 13.1 0.18 13.1 0.01
20 10 40 15.1 0.00 15.1 0.03 15.1 0.00
20 20 90 15.4 0.00 15.4 0.13 15.4 0.01
30 10 40 23.2 0.08 23.2 0.06 23.2 0.00
30 15 60 23.0 0.19 23.0 0.14 23.0 0.01
30 30 140 24.5 0.98 24.5 0.74 24.5 1.20

11

Table 7: Computational results: Miller and Wilson benchmarks (individual instances).

BRKGA DP1 DP2 AGA
Instance I P MOSP T(s) MOSP T(s) MOSP T(s) MOSP T(s)
Miller 20 40 13 0.0 13 0.6 - - 13 2.68
GP1 50 50 45 0.0 45 0.0 - - 45 0.02
GP2 50 50 40 0.0 40 0.0 - - 40 0.04
GP3 50 50 40 0.0 40 0.0 - - 40 0.24
GP4 50 50 30 0.0 30 0.0 - - 30 0.02
GP5 100 100 95 0.5 95 0.1 - - 95 0.44
GP6 100 100 75 0.7 75 0.1 - - 75 0.62
GP7 100 100 75 0.7 75 0.1 - - 75 0.58
GP8 100 100 60 0.7 60 0.2 - - 60 0.58

NWRS1 10 20 3 0.0 3 0.0 - - 3 0
NWRS2 10 20 4 0.0 4 0.0 - - 4 0
NWRS3 15 25 7 0.0 7 0.0 - - 7 0
NWRS4 15 25 7 0.0 7 0.0 - - 7 0
NWRS5 20 30 12 0.0 12 0.0 - - 12 0
NWRS6 20 30 12 0.0 12 0.0 - - 12 0
NWRS7 25 60 10 0.0 10 0.0 - - 10 0
NWRS8 25 60 16 0.0 16 2.1 - - 16 6
SP1 25 25 9 0.0 9 0.0 - - 9 0.45
SP2 50 50 19 0.0 19 1650.0 19 0.0 19 10.9
SP3 75 75 34 0.2 36 ~3600 34 0.4 34 36.7
SP4 100 100 53 0.6 56 ~14400 53 0.9 53 81.0

12

Table 8: Computational results: Faggioli and Bentivoglio’s (1998) instances.

I P
n m OPT BRKGA GHP TS GLS YUEN3 YUEN5

10 10 5.5 5.5 5.5 5.5 5.5 5.8 5.7
15 6.6 6.6 6.6 6.6 6.6 7.0 7.0
20 7.5 7.5 7.7 7.7 7.5 7.5 7.8
25 8.0 8.0 8.0 8.0 8.0 8.2 8.0
30 7.8 7.8 7.8 7.8 7.8 8.2 7.9
40 8.4 8.4 8.4 8.4 8.4 8.6 8.4

20 10 6.2 6.2 6.6 6.2 6.2 6.8 6.7
15 7.2 7.2 7.5 7.2 7.5 8.4 8.3
20 8.5 8.5 8.8 8.7 8.6 10.1 9.5
25 9.8 9.8 9.9 9.8 9.9 11.4 10.9
30 11.1 11.1 11.4 11.2 11.2 12.7 12.1
40 13,0 13.0 13.1 13.1 13.1 14.8 13.7

30 10 6.1 6.1 6.4 6.1 6.2 7.0 7.0
15 7.4 7.3 8.0 7.4 7.6 9.1 8.6
20 8.8 8.8 9.8 9.2 8.9 10.8 10.2
25 10.5 10.5 11.1 10.7 10.6 12.8 12.2
30 12,2 12.2 13.0 12.6 12.2 14.7 13.6
40 14,5 14.5 15.0 14.7 14.6 17.3 15.9

40 10 7.7 7.7 7.9 7.7 7.7 8.0 7.9
15 7.3 7.2 8.2 7.3 7.4 8.4 8.1
20 8.5 8.5 9.5 8.6 8.7 10.4 9.9
25 10.3 10.3 11.6 10.7 10.6 13.1 11.6
30 12.1 12.1 13.4 12.6 12.4 15.1 14.6
40 15.0 14.9 15.8 15.3 15.3 18.5 16.9

50 10 8.2 8.2 8.4 8.2 8.2 8.5 8.4
15 7.4 7.4 8.4 7.6 7.6 8.4 8.1
20 7.9 7.9 9.2 8.0 8.2 9.7 9.2
25 10.0 10.0 11.2 10.1 10.2 12.3 12.0
30 11.2 11.2 12.4 12.0 11.8 14.9 13.5
40 14.6 14.6 16.8 15.3 14.9 18.5 17.5

Table 9: Computational results: VLSI instances.

I P BRKGA AGA PMA CGA ECS GRACS
n m BKS MOSP T(s) MOSP T(s) MOSP T(s) MOSP T(s) MOSP T(s) MOSP T(s)

v4470 37 47 9 9 2.8 9 5.3 9 10 9 66.5 9 - 9 -
x0 40 48 11 11 2.3 11 6.6 11 30 11 75.6 11 - 11 -
W2 48 33 14 14 0.7 14 0 14 30 14 18.5 14 - 14 -
W3 84 70 18 18 8.4 18 18.9 18 90 18 306.3 18 - 18 -
W4 202 141 27 27 47.3 27 67,2 27 2400 27 5224.7 27 - 27 -

13

Table 10: Computational results: real instances from company “A”.

I P
n m OPT BRKGA T(s) AGA T(s)

A_AP-9.d_10 20 13 6 6 0.05 6 0.12
A_AP-9.d_3 20 16 6 6 0.05 6 0.17

A_FA+AA-_15 68 18 9 9 0.23 9 0.63
A_FA+AA-_2 75 19 11 11 0.15 11 0.68
A_AP-9.d_6 31 20 5 5 0.15 5 0.40

A_FA+AA-_12 75 20 9 9 0.23 9 0.77
A_AP-9.d_11 27 21 6 6 0.15 6 0.42
A_FA+AA-_6 79 21 13 13 0.28 13 1.20
A_FA+AA-_8 82 28 11 11 0.60 12 2.65
A_FA+AA-_11 99 28 11 11 0.65 11 2.92
A_FA+AA-_1 107 37 12 12 1.38 12 7.58
A_FA+AA-_13 134 37 - 17 1.45 17 11.82

Table 11: Computational results: real instances from company “B”.

I P
n m OPT BRKGA T(s) AGA T(s)

B_39Q18_82 14 10 5 5 0.00 5 0.00
B_ 42F22_93 18 10 5 5 0.05 5 0.04
B_22X18_50 14 11 10 10 0.03 10 0.05
B_18AB1_32 15 11 6 6 0.03 6 0.05

B_CARLET_137 14 12 5 5 0.03 5 0.00
B_12F18_11 21 15 6 6 0.08 6 0.16
B_18CR1_33 20 18 4 4 0.03 4 0.17

B_GTM18A_139 24 20 5 5 0.10 5 0.30
B_ 23B25_52 29 21 5 5 0.10 5 0.39
B_ 12M18_12 31 22 6 6 0.15 6 0.00

B_ CUC28A_138 37 26 6 6 0.10 6 0.00
B_ REVAL_145 60 49 7 7 1.28 7 9.37

4 Concluding remarks
In this paper we addressed the Minimization of Open Stacks Problem which consists of deter-
mining a sequence of cutting patterns that minimizes the maximum number of opened stacks
during the cutting process. The approach proposed combines a BRKGA and a local search
procedure for generating the sequence of cutting patterns. A new fitness function for evaluating
the quality of the solutions is also developed. Computational tests are presented using 6141
available instances taken from the literature. The high-quality of the solutions obtained validate
the proposed approach.
The new approach is extensively tested on 6141 problem instances and compared with other

approaches published in the literature. The computational experiments results demonstrate that
the new approach consistently equals or outperforms the other approaches.

14

Acknowledgments
This work has been supported by funds granted by the ERDF through the Programme COM-
PETE and by the Portuguese Government through FCT - Foundation for Science and Technol-
ogy, project PTDC/EGE-GES/117692/2010.

References
Banda, M.G., Stuckey, P.J., 2007. Dynamic programming to minimize the maximum number of
open stacks. INFORMS Journal on Computing 19, 607–617.

Bean, J.C., 1994. Genetics and random keys for sequencing and optimization. ORSA Journal
on Computing 6, 154–160.

Becceneri, J., 1999. O problema de sequenciamento de padrões para minimização do número
máximo de pilhas abertas em ambientes de corte industriais. Ph.D. thesis. Engenharia
Eletrônica e Computação, ITA/CTA, São José dos Campos.

Becceneri, J.C., Yanasse, H.H., Soma, N.Y., 2004. A method for solving the minimization of the
maximum number of open stacks problem within a cutting process. Computers & Operations
Research 31, 2315–2332.

Chu, G., Stuckey, P.J., 2009. Minimizing the maximum number of open stacks by customer
search, in: Principles and Practice of Constraint Programming-CP 2009. Springer. volume
5732 of Lecture Notes in Computer Science, pp. 242–257.

De Giovanni, L., Massi, G., Pezzella, F., 2010. Preliminary computational experiments with a
genetic algorithm for the open stacks problem. Technical Report. Dipartimento di Matematica
Pura ed Applicata Università degli studi di Padova, via Trieste, 63 - 35121 Padova (Italy).

De Giovanni, L., Massi, G., Pezzella, F., 2013. An adaptive genetic algorithm for large-size open
stack problems. International Journal of Production Research 51, 682–697.

Faggioli, E., Bentivoglio, C.A., 1998. Heuristic and exact methods for the cutting sequencing
problem. European Journal of Operational Research 110, 564–575.

Fink, A., Voß, S., 1999. Applications of modern heuristic search methods to pattern sequencing
problems. Computers and Operations Research 26, 17–34.

Gonçalves, J., Resende, M., 2012. A parallel multi-population biased random-key genetic algo-
rithm for a container loading problem. Computers & Operations Research 39, 179–190.

Gonçalves, J.F., Resende, M.G., 2013. A biased random key genetic algorithm for 2d and 3d
bin packing problems. International Journal of Production Economics .

Goncalves, J.F., Sousa, P.S.A., 2011. A genetic algorithm for lot sizing and scheduling under
capacity constraints and allowing backorders. International Journal of Production Research
49, 2683–2703.

Gonçalves, J.F., Almeida, J.R., 2002. A hybrid genetic algorithm for assembly line balancing.
Journal of Heuristics 8, 629–642.

Gonçalves, J.F., Mendes, J.J.M., Resende, M.G.C., 2005. A hybrid genetic algorithm for the
job shop scheduling problem. European Journal of Operational Research 167, 77–95.

Gonçalves, J.F., Resende, M.G.C., 2004. An evolutionary algorithm for manufacturing cell
formation. Computers and Industrial Engineering 47, 247–273.

15

Gonçalves, J.F., Resende, M.G.C., 2011. Biased random-key genetic algorithms forÂ combina-
torial optimization. Journal of Heuristics 17, 487–525.

Gonçalves, J.F., Resende, M.G.C., 2013. An extended Akers graphical with a biased random-key
genetic algorithm for job-shop scheduling. International Transactions in Operational Research
To appear.

GonÃ§alves, J.F., Mendes, J.J.M., Resende, M.G.C., 2009. A genetic algorithm for the resource
constrained multi-project scheduling problem. European Journal of Operational Research 189,
1171–1190.

GonÃ§alves, J.F., Resende, M.G.C., Mendes, J.J.M., 2011. A biased random-key genetic al-
gorithm with forward-backward improvement for the resource constrained project scheduling
problem. Journal of Heuristics 17, 467–486.

Hu, Y.H., Chen, S.J., 1990. Gm plan: a gate matrix layout algorithm based on artificial
intelligence planning techniques. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on 9, 836–845.

Limeira, M., 1998. Desenvolvimento de um algoritmo exato para a solução de um problema de se-
qüenciamento de padrões de corte. 1998. Ph.D. thesis. Dissertação (Mestrado em Computação
Aplicada), Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 1998.[Links].

Linhares, A., Yanasse, H.H., 2002. Connections between cutting-pattern sequencing, vlsi design,
and flexible machines. Computers & Operations Research 29, 1759–1772.

Linhares, A., Yanasse, H.H., Torreao, J.R., 1999. Linear gate assignment: a fast statistical me-
chanics approach. Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on 18, 1750–1758.

Lins, S., 1989. Traversing trees and scheduling tasks for duplex corrugator machines. Pesquisa
Operacional 9, 40–54.

Mendes, A., Linhares, A., 2004. A multiple-population evolutionary approach to gate matrix
layout. International Journal of Systems Science 35, 13–23.

Möhring, R.H., 1990. Graph problems related to gate matrix layout and PLA folding. Springer.

Morán-Mirabal, L., González-Velarde, J., Resende, M., 2013. Randomized heuristics for the
family traveling salesperson problem. International Transactions in Operational Research .

Oliveira, A.C., Lorena, L.A., 2006. Pattern sequencing problems by clustering search, in: Ad-
vances in Artificial Intelligence-IBERAMIA-SBIA 2006. Springer, pp. 218–227.

Oliveira, A.C.M., Lorena, L.A.N., 2002. A constructive genetic algorithm for gate matrix layout
problems. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
21, 969–974.

Smith, B., Gent, I., 2005. Constraint modelling challenge 2005, in: IJCAI 2005 Fifth Workshop
on Modelling and Solving Problems with Constraints, pp. 1–8.

Spears, W.M., Dejong, K.A., 1991. On the virtues of parameterized uniform crossover, in:
Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 230–236.

Yanasse, H., 1996. Minimization of open orders-polynomial algorithms for some special cases.
Pesquisa Operacional 16, 1–26.

Yanasse, H., 1997a. A transformation for solving a pattern sequencing problem in the wood cut
industry. Pesquisa Operacional 17, 57–70.

16

Yanasse, H., Becceneri, J., Soma, N., 1999. Bounds for a problem of sequencing patterns.
Pesquisa Operacional 19, 249–277.

Yanasse, H., Limeira, M., 2004. Refinements on an enumeration scheme for solving a pattern
sequencing problem. International Transactions in Operational Research 11, 277–292.

Yanasse, H.H., 1997b. On a pattern sequencing problem to minimize the maximum number of
open stacks. European Journal of Operational Research 100, 454–463.

Yanasse, H.H., Becceneri, J.C., Soma, N.Y., 2007. Um algoritmo exato com ordenamento parcial
para solução de um problema de programação da produção: experimentos computacionais.
Gestão & Produção 14, 353–361.

Yanasse, H.H., Senne, E.L.F., 2010. The minimization of open stacks problem: A review of
some properties and their use in pre-processing operations. European Journal of Operational
Research 203, 559–567.

Yuen, B.J., 1991. Heuristics for sequencing cutting patterns. European Journal of Operational
Research 55, 183–190.

Yuen, B.J., 1995. Improved heuristics for sequencing cutting patterns. European Journal of
Operational Research 87, 57–64.

Yuen, B.J., Richardson, K.V., 1995. Establishing the optimality of sequencing heuristics for
cutting stock problems. European Journal of Operational Research 84, 590–598.

17

	Introduction
	Biased random-key genetic algorithm
	Overview
	Biased random-key genetic algorithm
	Chromosome representation and decoding
	Solution builder
	Chromosome Adjustment
	Fitness function

	Experimental results
	Benchmark algorithms
	Test problem instances
	GA configuration
	Computational results

	Concluding remarks

