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ABSTRACT. Planning vaccine distribution in rural and urban poor communi-
ties is challenging, due in part to inadequate vehicles, limited cold storage,
road availability, and weather conditions. The University of Washington and
VillageReach jointly developed and tested a user-friendly, Excel spreadsheet-
based optimization tool for routing and scheduling to efficiently distribute
vaccines and other medical commodities to health centers across Mozambique.
This paper describes the tool and the process used to define the problem and
obtain feedback from users during the development. The distribution and rout-
ing tool, named Route Optimization Tool (RoOT), uses an indexing algorithm
to optimize the routes under constrained resources. Numerical results are pre-
sented using five datasets, three realistic, and two artificial datasets. RoOT
can be used in routine or emergency situations, and may be easily adapted to
include other products, regions, or logistic problems.

1. INTRODUCTION

Distribution of vaccines in rural Mozambique faces many challenges, such as
inadequate vehicles, limited cold storage, road availability, and variable weather
conditions. This paper presents joint work between VillageReach, a nonprofit orga-
nization that transforms health care delivery to reach everyone, including the most
rural and remote communities (VillageReach, 2019), and the University of Washing-
ton, Department of Industrial & Systems Engineering, to optimize delivery routes
that can improve the efficiency of vaccine distribution when considering issues such
as vehicle availability and reliability, road conditions, and weather. VillageReach
and the University of Washington (UW) are working with the Mozambican Ministry
of Health (MoH) to develop and test a user-friendly, Excel spreadsheet-based opti-
mization tool, called the Route Optimization Tool (RoOT), for routing and sched-
uling to effectively distribute vaccines and other medical commodities to health
centers across the country. RoOT is designed to be easily updated and executed,
and considers the availability of roads, vehicles, and medical products to distribute.
The tool can be used periodically for routine operations, in emergency situations,
or pandemics, such as COVID-19 (Peckham, 2020). RoOT can also be used for
strategic planning when exploring the effect of changes in the situation (such as
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new or closed health centers, additional or fewer vehicles, new medical supplies, or
new refrigerators) on distribution plans.

2. METHODOLOGY

The process of creating RoOT started with several discussions among UW and
VillageReach team members describing goals for a light-touch routing tool for po-
tential government users in Mozambique. Based on the experience of VillageReach
and the Mozambican government with current network optimization tools, it be-
came clear that the user interface must not be complicated to use and that it should
not be difficult to update data. Existing tools are not typically used by the Mozam-
bican Ministry of Health to plan distribution of medical supplies, partly because
of these difficulties. The team decided to consolidate all input data into one Excel
spreadsheet file that is easy for users to update. The spreadsheets are designed to
be in a similar format to documents that the government stakeholders are familiar
with, to make data entry easy. The output results are presented in another Excel
file.

The objectives and constraints of the route optimization model were discussed
with VillageReach, UW, and MoH team members, to ensure the model reflects
issues of concern to the end users. Road and vehicle conditions are important
considerations and affect delivery plans. Certain roads may not be accessible due
to rain or flooding, and a different route may need to be used during the rainy season
or in the event of cyclones. Furthermore, untimely delivery may affect the potency
of vaccines. For example, if a vehicle breaks down en route or gets stuck in the
mud, the temperature of the vaccines in cold storage may violate the recommended
range, which would impact the potency of the vaccines (Garnett, 2015). These
critical and practical issues that affect distribution are included as “risk factors”
and are incorporated into the route optimization model with the use of penalty
parameters in an objective function.

Another objective is to minimize the total transit time to distribute the vaccines
to the rural areas. RoOT allows users to select either objective function, or to
minimize a weighted sum of the two objective functions. Whereas most routing
problems minimize cost, the primary objective in RoOT is the timely delivery of
effective vaccines within constrained resources. However, a cost calculation associ-
ated with a solution is provided to the user as additional information.

The first prototype was shared with all team members over several conference
calls, and then the UW doctoral student traveled to Mozambique to obtain more
feedback and determine important features. As is typical with vehicle routing op-
timization models, the computer execution time to determine an optimal solution
can be hours or even days, which is impractical for our end users. It was determined
from interviews with VillageReach and MoH that a light-touch tool must quickly
return a feasible solution for it to be useful for operational decisions. Instead of
using a commercial solver, a new solver, called Vehicle Routing and Scheduling Al-
gorithm (VeRSA) (Zabinsky et al., 2020), was tailored to fit the considerations of
vaccine distribution. VeRSA uses an indexing method to determine near-optimal
feasible solutions promptly and is embedded into a branch and bound framework
to obtain an optimality gap for intermediate solutions. Given sufficient time, it
will eventually obtain an optimal solution (Zabinsky et al., 2020). The indexing

2



algorithm is coded in Python and reads and outputs Excel files. For comparison
purposes, the performance of the Python implementation is compared to the per-
formance of a commercial solver, Gurobi 8.0.1 (Gurobi Optimization LLC, a), as
well as to two open-source solvers, CBC and GLPK (Forrest et al., 2018; GNU,
2019), on the same mixed-integer optimization model.

RoOT was tested by VillageReach team members during the summer of 2019,
and feedback was incorporated into the version delivered on November 1, 2019.
Users from the Mozambican Ministry of Health are being trained on the use of
RoOT and final modifications will be implemented in 2020. RoOT will be translated
into Portuguese for the Mozambican users, and the English version will be available
on Github in 2020 for other users from NGOs, government and academia.

This paper is organized as follows. Section 3 contains background material and
a brief literature review of humanitarian logistics with a brief discussion of vehicle
routing problems and algorithms. Section 4 includes a detailed description of RoOT.
The mixed-integer optimization model is given in Section 5, and the indexing al-
gorithm is discussed in Section 6. Numerical results comparing the performance of
several solvers using three realistic datasets are presented in Section 7, and finally,
conclusions are drawn in Section 8, followed by future work in Section 9.

3. BACKGROUND AND LITERATURE REVIEW
3.1. Humanitarian logistics. Vac-
cine distribution is a difficult prob-

lem for governments around the world, Disct::t‘;“’“ o
but it is especially challenging in poor /ﬂ\ e e
neighborhoods and low and middle- ’fﬁa

income countries, where the demand is
uncertain due to lack of accurate pop-
ulation estimates, and road infrastruc-
ture is poor, even inaccessible under /\

some weather conditions. Chan et al. ﬂ

(2013) discuss the problem that low and [ Last mile I
middle-income countries have of adopt-

ing new vaccines. For example, 98%
of newborns in low-income countries FIGURE 1. Last mile of vaccine delivery

do not receive pneumococcal conjugate

vaccines, according to their government plan, while in high-income countries, the
number is 13%. The geography of many low-income countries, such as the lack of
proper roads or transportation methods to reach populations in need (Chan et al.,
2013), is an important factor. In addition, current distribution respects political
boundaries (Lim et al., 2019). Therefore, it is important to understand this type
of humanitarian logistics problem and adapt how other fields achieve efficient dis-
tribution under these conditions.

Even though it is important to understand the underlying conditions in this type
of humanitarian logistics problem, it is also vital to recognize the available supply
chain tools that can improve operations in these circumstances. Van Wassenhove
(2006) and Tomasini and Van Wassenhove (2009) discuss the existing gap between
supply chain tools for humanitarian organizations and those used in the private
sector. Humanitarian organizations have begun to realize the value of logistics and



supply-chain management tools used in the private sector to improve their opera-
tions (Van Wassenhove and Pedraza Martinez, 2012). Consequently, humanitarian
organizations have begun to adopt private sector practices in their operations.

For example, by using supply-chain practices from the private sector, Nigeria has
increased its immunization coverage by about 30%, with a cost reduction of about
15% (Sarley et al., 2017). Through the use of computer simulation, Lee et al. (2016)
redesigned the vaccine distribution process in two provinces in Mozambique, as a
joint effort with VillageReach. The redesign increased availability by 27% and 8%,
while decreasing costs by 40% and 37%, respectively. However, some differences
between a private sector supply chain and a humanitarian relief chain should be
noted. In the private sector, the network configuration is more stable with respect to
supply and demand (quantities and entities involved), while they are challenging to
predict and are less consistent in humanitarian logistics (Manopiniwes and Irohara,
2014). In addition, cost is often the sole objective in the private sector whereas a
humanitarian relief chain may prioritize rapid distribution using available resources
(Tomasini and Van Wassenhove, 2009).

Limited technology is an important consideration for humanitarian logistics, such
as poor Internet connectivity, lack of real-time data, and outdated computers. Sup-
ply chain tools need to be simple for users, and may not be adopted by the end users
if they are complex to use, require data that is not easily available, require time
to update, or need a fast reliable Internet connection. There is a lack of tools for
routing that are easy to use and address desired issues that were highlighted during
interviews with VillageReach staff and Mozambican Ministry of Health (Vitoriano
et al., 2013).

The differences between humanitarian organizations and private sector, and the
lack of available tools motivate the development of an easy to use routing tool that
is designed to address last mile (Laseinde and Mpofu, 2017) vaccine distribution in
a developing country. Figure 1 exemplifies the last mile for vaccine delivery.

3.2. Current tools. We evaluated 33 commercial software products listed in Ta-
bles 1 and 2, where Table 1 lists 15 that focus on humanitarian logistics, and Table 2
lists 18 that focus on routing. Most of the software that provide decision support
systems for humanitarian logistics focus on inventory control and are primarily
used for disaster preparedness and response but do not incorporate routing. These
systems also primarily address management, but not operational issues (Vitoriano
et al., 2013). Therefore, this project focused on developing a routing optimiza-
tion tool that is simple to use, and in which the user interacts only with Excel
files. The optimization algorithm is run in Python in the background to create the
distribution routes and schedules.

3.3. Vehicle routing problem. The problem addressed in this project is a vehicle
routing problem (VRP) in which routes between centers are planned such that each
center is visited once by a vehicle, and each vehicle starts at the distribution center
(often termed a depot) and returns to it by the end of its route. This vehicle
routing problem is widely studied and Laporte (1992) presents a comprehensive
review of the problem. There are many variations of the VRP that are studied,
such as the addition of time constraints including time windows for delivery, total
time for each route (Kohl and Madsen, 1997; Solomon and Desrosiers, 1988), and
capacity constraints (Laporte et al., 2002; Sungur et al., 2008).
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TABLE 1. Humanitarian logistics tools/software

Tool/Software name

10
11
12
13
14
15

LLamasoft — Supply Chain Guru —
Cloud-Based Supply Chain Design Software

HERMES — Highly Extensible Resource for
Modeling Event-Driven Supply Chains

GLC — Global Logistic Competence

SUMA

LSS

Fritz Institute - Humanitarian Logistics
Software (PRSRM-HLS)

HELIOS

Sahana

Chevinfleet

Logistimo

Parcel Project

UNICEF

ELIST

DMIS

LOGITIX

TABLE 2. Vehicle routing tools/software

Tool/Software name
ClearD Optima
DISC
Intelligent Routing
JOpt
ODL Studio
OptimoRoute
Optrak4
Routist
Routyn
0 Scientific Logistics Cloud-based
Route Optimization
11 StreetSync Pro
12 Locus Dispatcher
13  Workwave Route Manager
14  Onfleet
15 Routific
16 Loginext
17 Track POD
18 Cro software solutions

= © 00 O Uik Wi+

The problem considered in this paper includes capacity constraints on the ve-
hicles and can be formulated as a capacitated vehicle routing problem (CVRP)
(Laporte et al., 2002). The need of a cold chain is also an important aspect to
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consider in vaccine distribution (Lim et al., 2019). Vaccines are perishable and
inappropriate refrigeration outside of ideal storage temperatures results in waste
(Comes et al., 2018). Since the vehicles in Mozambique use “cold boxes” as passive
containers to keep the vaccines within the proper temperature range, we consider
the capacity of cold storage by vehicle type. The size of the vehicle (e.g., motor-
cycle, car, truck) determines the limited total capacity for its passive container for
cold storage and other medical supplies that do not require refrigeration. Therefore,
we incorporate two types of capacity constraints per vehicle, called cold and dry ca-
pacities. Prosser et al. (2017) discuss the importance of redesigning vaccine supply
chain in Benin since insufficient cold chain capacity jeopardized the distribution of
new vaccines.

Large and small cold boxes can maintain the proper temperature for a specified
maximum amount of time before the vaccines are either used or transferred to a
refrigerator at a health center. In this model, the total time of a route is constrained
so that the cold box will preserve the vaccine until final delivery. We do not allow
transfer of products between health centers, as it would require intermediary storage
and some regions do not have electricity. Therefore, in addition to the vehicle
capacity constraint, we also include timing constraints, such as a constraint on
the time from departure to the time of delivery and a constraint on the time for
a driver to complete a route (typically eight hours) as in Braysy and Gendreau
(2005); Chen et al. (2006); Grasas et al. (2014); Laporte (1992); Laporte et al.
(1992); and Zabinsky et al. (2020).

Different factors can lead to vial wastage in vaccine distribution. In addition
to refrigeration or cold boxes keeping the vaccines within a proper temperature
range, closed vial wastage may be due to breakage of vials (Hanson et al., 2017).
We include the risk of breakage of vials due to poor road condition or poor vehicle
condition with a penalty parameter.

In humanitarian logistics, most routing problems focus on disaster preparedness,
e.g., earthquakes (Ahmadi et al., 2015; Mete and Zabinsky, 2010; Tofighi et al.,
2015). These problems are commonly modeled as classical vehicle routing or dy-
namic network problems, having as objective the minimization of total travel time,
unmet demand, or cost (Ozdamar and Ertem, 2015). Hoyos et al. (2015) consider
the use of operations research in disaster operations management. In 48 papers
using mathematical models, the most common goals were to minimize cost (31%),
minimize unmet demand (21%), and maximize regional coverage (19%).

The model presented in this paper has two objective functions, i.e., minimization
of transportation time and minimization of risk factor for spoilage and breakage of
vaccine using penalties for use of certain roads and vehicles. Although much has
been written about the importance of transportation for humanitarian logistics, in-
frastructure risks such as information technology, financial systems, and transporta-
tion are rarely addressed, and those risks are responsible for most of the network
disruptions. Since transportation is fundamental to humanitarian logistics, its risks
should be properly accounted for (Baharmand et al., 2017). According to Ozdamar
and Ertem (2015), road risks should be considered in the objective function, along
with cost, travel time, and demand satisfaction. Furthermore, road failure, caused
by flooding, road sink, or bridge collapse, could make a calculated route longer
than expected or even infeasible (Hamedi et al., 2012). An option is to consider the
reliability of the transportation scheme, such as the probability of not completing
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a route. Penalty parameters are also used to incorporate a failure probability as
in Hamedi et al. (2012). The use of penalty parameters reduces the amount of
traffic (e.g., number of vehicles) on unreliable roads (Hamedi et al., 2012). Another
way to calculate risk is to estimate the probability a road between two centers is
inaccessible. Nolz et al. (2011) identify critical roads that could be bottlenecks in
a tour. Avoiding the bottleneck decreases the total risk. In one example, using
a minimum risk approach, the risk range decreased from 0.97-0.98 to 0.81-0.83.
However, the travel time range increased from 0.25-0.61 to 0.59-0.98. Since there
is a trade off between risk and travel time, the users of RoOT will decide whether
to minimize risk (e.g., penalties) or minimize transit time, or minimize a weighted
sum of both objectives.

While analyzing risks for humanitarian logistics is not typically addressed in
the literature (Baharmand et al., 2017), risk minimization is one of the main goals
when transporting hazardous materials. Since the 1970s, the National Transporta-
tion Safety Board recommends a risk-based approach for transporting hazardous
materials (List et al., 1991). One of the reasons there is a large quantity of research
done for risk minimization is that fatalities due to hazmat-related traffic accidents
are considered unacceptable (Akgiin et al., 2007). Among multiple objectives for
routing hazardous materials, minimization of risk should be the main objective
(Patel and Horowitz, 1994).

Some approaches for risk analysis for hazardous material transportation incor-
porate an evaluation of accident rates by mode, carrier type, vehicle type, and road
classification (List et al., 1991). According to List et al. (1991), private vehicles have
lower accident rates than for-hire ones, and accidents rates due to the time of day
and weather conditions depend on the roadway type. In addition, accident rates
may consider the road classification (expressways, arterials, collectors, ramps), the
designed speed, the surface condition, and visibility (Saccomanno and Chan, 1985).

Considering the weather and time of day (e.g., daylight or night) is also impor-
tant. Weather affects not only the transit time but also the risk of an accident.
This includes the risk of the harm that a hazardous spill can do to the nearby
population (Akgiin et al., 2007). Moreover, other risks that may be addressed are
the probability of an accident or delay at a facility, the accident rate en route, and
the probability of an accident due to speed and road condition (Batta and Chiu,
1988).

Therefore, to minimize the spoilage and breakage of vaccines, the methodol-
ogy used for hazardous materials was applied and vehicles and road were classified
according to their conditions, assigning corresponding penalties to each. The cor-
responding objective function representing risk is the minimization of the sum of

these penalties.
3.4. Exact methods and heuristics for solving vehicle routing problems.

The vehicle routing problem is in general NP-hard and is difficult to solve exactly
for instances with more than 50 customers (Laporte et al., 2002). Exact methods
that guarantee an optimal solution usually start with a relaxation of the linear
problem, followed by a presolve phase to reduce the problem. Then they apply
branch-and-bound, branch-and-cut, or cutting-plane algorithms to solve the prob-
lem exactly (Forrest et al., 2018; Gurobi Optimization LLC, b; GNU, 2019; Martin,
2010). Research on solving large scale vehicle routing problems often focuses on
heuristic solution approaches, which do not guarantee optimality but can find good
solutions quickly to large scale problems. Cordeau et al. (2002) and Vidal et al.
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(2012b) present extensive comparisons of heuristics applied to solve vehicle routing
problems. Common heuristics are Tabu Search, Genetic Algorithms, and Greedy
Randomized Adaptive Search Procedure (GRASP) (Berbeglia et al., 2010; Gen-
dreau et al., 1999; Grasas et al., 2014; Hanson et al., 2017; Kontoravdis and Bard,
1995; Taillard et al., 1997; Vidal et al., 2012a).

To address large scale problems, this paper applies a variant of the Vehicle Rout-
ing and Scheduling Algorithm (VeRSA) presented in Zabinsky et al. (2020). VeRSA
is an exact method that embeds an indexing rule to prioritize pickups on different
routes in a branch-and-bound framework, dynamically constructing the branches
to be traversed. Therefore, it is possible to reach a near-optimal feasible solution
quickly, while guaranteeing an optimal solution if the user runs it long enough.
In Zabinsky et al. (2020), the performance of VeRSA compared favorably to a
commercial solver and a genetic algorithm. In this paper, we adapted the index-
ing algorithm used in VeRSA to our vaccine distribution and routing problem, as
discussed in Section 6.

4. DESCRIPTION OF THE ROUTE OPTIMIZATION TooL (RoOT)

4.1. Model approach. The routing optimization model in RoOT is a mixed in-
teger program (MIP) with two objectives and constraints tailored to the vaccine
distribution problem in Mozambique. The participation of all team members in the
modeling effort aided in identifying important considerations. Discussions of how
to incorporate data from existing sources into Excel spreadsheets were also critical
for the light-touch tool to be accepted and used.

In every province in Mozambique, vaccine distribution is done by district to
respect political boundaries. Three data sets are included in this paper, with one
district in each of three provinces (Tete, Maputo, and Sofala). For example, one
district in the Sofala province has 16 health centers, 5 vehicles, and 13 products.

From discussions with the stakeholders, it was decided that the model should
consider the following:

o Multiple objectives with different weights. The users agreed that two ob-
jectives are important. The first is to minimize total transit time and the
second to minimize the penalties for using vehicles or roads that are not
in good condition. The users can decide how to combine the two objective
functions by choosing an appropriate set of weights. The penalty parame-
ter was also discussed. Penalty parameters are used to represent unreliable
vehicles and poor road conditions that can jeopardize the delivery of viable
vaccines (breakage and temperature range). Since it is difficult for users to
scale penalty parameters appropriately, the Excel input file has dropdown
menus and the users select the appropriate vehicle and road condition (e.g.,
there are four options for a vehicle ranging from very reliable to unreliable).
The penalty parameter values are determined in the Python code to main-
tain appropriate scaling.

e Supply and demand issues. It was discussed that the demand projections
can exceed the supply, and also that demand can exceed the storage capac-
ity at a health center. Usually, vaccines are distributed once a month in
Mozambique, so it was agreed that if there is insufficient supply to meet all
of the monthly demand, then the input demand will be scaled back until it
reaches the available supply. In this case, the recommendation is to do more
than one delivery during the month, when the products arrive. Sometimes
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the demand at a health center exceeds the current storage capacity at the
center, however, it is anticipated that there will be sufficient storage when
needed (perhaps a refrigerator is awaiting repair). In this case, a warning
is issued but the optimization can still be run.

o Allow multiple routes per vehicle. The user inputs all available vehicles, and
each vehicle is assigned a route. In addition, each route has a maximum
duration time (typically eight hours, specified by the user). If needed to
achieve the complete distribution, vehicles can be assigned more than one
route, however, all available vehicles should be used before one is reused.
For example, if two vehicles are available, with available drivers, each will
be assigned a route that may be completed on the same day. However, if
the two vehicles do not have enough carrying capacity or time to deliver
all of the vaccines, they can be assigned an additional route to complete on
another day.

e (Cost. Although the users do not want to necessarily minimize cost in the
objective function, they are still interested in the cost of the routes and
distribution plan. Cost calculations are provided in the output file based
on input cost parameters. It should be noted that the costs are calculated
after defining the routes, and are not part of the optimization model.

4.2. Usability. It is important that the tool be easy to use, and usability of the
route optimization tool led to the decision to use Excel spreadsheets for inputs and
outputs. The optimization algorithm is run by clicking on executable Python code,
which allows a user to browse and select an input file. An Excel output file is
created containing the routes with details on the types and quantities of vaccines
and medical supplies to be delivered.

VillageReach evaluated the first prototype according to usability, using methods
from Nielsen and Mack (1994). As a result, it was determined that there were too
many possibilities for typos by the users, so dropdown menus were incorporated
in the input file for many parameters. Adding a new health center necessitates
changes in several of the spreadsheets, so the input file was designed so that user
only enters the name of the new health center once, and it is automatically repli-
cated to the other sheets to avoid errors. Similarly, adding new vaccines, medical
supplies, or vehicles are entered once and then automatically replicated to sheets
with connecting cells. Worksheets and cells with calculations that are used by the
Python program but are not important to the user are locked and hidden. Sections

3.4 and 3.5 present the input and output files.
4.3. Input file. The input file is an Excel file with seven spreadsheets. Each sheet

has brief instructions in the first line, The headings that are highlighted in yellow
require input from the user, and some of the input cells have drop down menus. The
seven input sheets are named: parameters, products, center_capacities, demand,
vehicle, distance_data, and road_condition.

The parameters sheet (Figure 2) defines the general parameters of the vehicle
routing problem, including: run description, start and final location, start time and
return time for the route, drop-off time, and weights for each objective function.
The weights are used to balance the objective of minimizing transit time with the
objective of minimizing penalties for using roads or vehicles that can be risky to
the product due to their condition. Any number between 0 and 10 will balance
minimizing transit time and risk. The total is always 10. For example, the user can
input 6 for the transit time weight, and the sheet automatically calculates 4 for the
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weight on the penalties. If the user enters 10, the model will only minimize transit
time. If the user enters 0, the model will only minimize the penalties for roads and
vehicles (risk to vaccines).

A B E F G H

Instructions:
Enter the input data to use in the Distribution Routing tool.
1. Enter a brief description of the input data in this file to use in the Distribution Routing tool. This will help you track versions of input
files
2. Select the starting lecation for distribution from the dropdown menu.
3. Enter the start and return time in 24-hour format (hh:mm)
4, Enter number of hours spent at each facility for delivery, inventory, and supervision
5. Enter a weight for transit time between 0 (minimum) and 10 {maximum)

If you enter 10, the model will only minimize transit time

If you enter 0, the model will only minimize the risk from roads and vehicles

1 Any number between 0 and 10 will balance minimizing transit time and risk.

2 Input Description Test new input file
3 | Starting Location for distribution Center A -

4 Start time for each day (in hh:mm hours format) [ 8:00

5 Return time for each day (in hhimm hours format) | 18:00

& Time spent at each facility for delivery and supervision (in hours) | 2

7 Weight for transit time (0 min - 10 max) 5

& Waeight for risk (0 min - 10 max) ] s

FIGURE 2. parameters sheet — input

In the products sheet (Figure 3), the user enters the products to be distributed
and their volume and storage characteristics, such as doses per vial or number of
syringes. The user also specifies if the product needs cold storage.

B (= D E F G
Instructions:
Enter the products in the supply chain.
1. Enter the name of the product. You can enter up to 100 products.
2. Indicate if the product requires cold storage, by selecting "Yes" or "No" in the dropdown menu.
3. For vaceines , enter the deses per vial and the volume per dese (in cm3). The volume for a vaceine dose should include the volume for diluent
needed.
4, For non-vaccine products, such as syringes or medicines, enter the volume per unit (cm3).
1

.Qlllmlt\l of doses per Waccine volume per Non-vaccing voluma |

2 Products Requires Cold Storage? vial dose (em3) per unit (em3) Volume per dose (m3)
3 G.AMensal (0-11 meses] Yes 10 12 0.0000012
4 BCG (old policy) Yos 10 12 0.0000012
5 VAP-10 Yes 10 1.3 0,0000113
L] |VM’-20 Yes - 10 113 0.0000113
7 Penta-1 10 113 0.0000113
8 Penta-10 s 10 113 0.0000113
9 PCV10 Yes 10 138 0.0000138
10 vAs Yes 10 24 0,0000024
11 G.A Mensal VAT MIFs  Yes. 10 311 0,00000311
12 VAT Gravida Mensal Yes 10 3.11 0,00000311
13 Seringa 0.5 ml No 56.7 0,0000567
14 Seringa 0.05 mi No 375 0.0000375
15 Seringa 5 ml JNo 66.3 0.0000663

F1GURE 3. product sheet — input

The center_capacities sheet (Figure 4) has health center information (name and
type), and storage capacities for cold and dry products. When a user enters a new
center name on this sheet, it is automatically added to the other sheets.

In the demand sheet (Figure 5), the user enters the demand for each product to
be distributed to each center, in doses or units. If the demand exceeds the center
capacity, the warning column will turn from green to red. If there is a warning, the
user should adjust the demand or increase the storage capacity to make sure the
center can store the delivered vaccines and supplies. Note that the optimization
can still be run even if there is a warning.

The vehicle sheet (Figure 6) has the vehicle information that is used for deliv-
ering vaccines, their availability, and their characteristics, such as average velocity,

10



A B ic E
Instructions:
Enter cold and dry capacity of centers where vaccines and medical products will be
delivered.
1. Enter the name of the center.
2. For each center, enter the cold storage capacity (liters), and the dry storage
1 capacity (m3).

2 Center ‘Tvpe of oenterltuld capacity (liters) Dry capacity (m3)
3 Center A District 24 2.4
4 Center B Health Center 24 2.4
5 Center C Health Center 24 2.4
& |Center D Health Center |~ 24 2.4
7 Center E National 24 2.4
8 CenterF Regional 24 24
Provincial

9 Center G District 24 2.4
10 Center H H 24 2.4
11 Center | Lot J 24 2.4
12 Center) Health Center 24 2.4
13 Center K Health Center 24 2.4

FIGURE 4. center_capacities sheet — input

Ce NN R WwN =

13

A B C E F

Instructions:

Use this sheet to enter the demand for the vaccines and medical products.

1. For each center, enter the demand for vaccines (in doses), and for dry goods and/or medical supplies (in
units).

If the demand exceeds the center capacity, the warning column will turn from green to red. If you see the
warning, adjust the ke the center to store it. The Distribution Routing Tool
can still be run even with the warning.

\Warning for cold capacity Warning for dry capacity
Centers G.A Mensal (0-11 meses]BCG (old policy) VAP-10/VAP-20|Penta-1/Penta-10/PCV10|VAS (
A 1000 1000 1000 674 68 28
B 71 14 38 273 28 12
c 67 1B 36 258 26 1
D 15 3 9 59 6 5
E 3 1 2 13 2 5
F 14 3 8 S5 6 5
G 7 1 4 28 3 s
u e 2 a ca c <
FIGURE 5. demand sheet — input
A (] c 0 3 F G H i
Instruetions:
Enter the I be used for dry goods supplies.
1. Enter the vehicle name.
2 be used in th lysis by sel “Available" or “Not Available” from the dropdown menu.
3. Enter the avarage spaed of the vehicle in Km per hour, mileage in Km per itre and price per litre (5)
4. Enter the total storage capacity of the and cold storage. The dry storage capacity is calculated.
5. Enter the vehicla condition from the dropdown menu. This will be used to assess the risk from using the vehicle.
1 6. Enter the maximum time vaccines can be kept cold in a vehicle In hours.
Average Dry
Price per cold Vehicle ™ day Number
2 VehicleName Status |(Kmperhr)  perliter) [liter($) capacity (m3) (m3) (m3) Condition _tima (hours) of people
3 Vehicle 1 Available 0 3991 [3 4 2 Always Reliable 10 100
4 ‘V!N:Iel Avallable 60 L) 39.91 10 6 4|Sometimes Relly = 100
5 Vehicle 3 Not Avalk 60 s 3991 3 4 2{ays Relisble 100
6 0 Often
7 Ofarey Relable
8 0

FIGURE 6. vehicle sheet — input
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fuel consumption, fuel costs, storage capacity, and personnel per diem costs for
distribution.

The distance_data sheet (Figure 7) displays the distance between centers as a
matrix. To provide flexibility in representing one-way roads, the distance matrix
does not need to be symmetric.

Finally, the road_condition sheet (Figure 8) defines the condition of the road
between centers using a dropdown menu, for the model to assess the risk of using
that road. Options include: Fully paved, partially paved, dirt road (good quality),
dirt road (rough quality), boat access only, foot access only, not accessible.



B £ D 3 F G H ! ] K L

[t
atrix, Enter the

imodel to calculate the optimal route.
1 |1. Enter the distanea (km} between each center. ¥
3 Centers Center A Center B Center C Center D CenterE  CenterF CenterG CenterH Center| Center) C
4 CenterA | 0 30 36 12 48]
5 CenterB 30] o 54 42 3 39, 18 21 24 60
o conterc % 4] O s s e 3w s
7 CenterD 12, a2 36 0 57, 21 54 27 24 78,
8 ConterE 8] 33 81 57, Cl a2 15| 8 3 2
9 Center F 18 39| 54 21 42 0 39| 33 15 57,
10 Conter B i o — [EEET T
11 ComterH 13, 2 E) 27 T 33 36 0 21 75
12 Canter! 15 24 51 2 3 15 30, 21] [ 57
13 Conter) - ws v s w5 ow o
14 Centerk 27 54 24 18] s 30 66| 33 39 o6[]

FIGURE 7. distance_data sheet — input
8 14 o € ¢ 6 r ) K
Instructions:
-

1. Enter condition of
1
3 Canters |contera  centerB  CantarC ContarD Canter £ Canter F Canter G CanterH  Canter |
4 CenterA Fully paved |Fully paved Fully paved Fully paved  |Fully paved | Fully paved  |Fully paved |Fully paved
5 Center8 Full paved [Fully paved _[fully paved Dirt road (GoocFully paved  Fully paved |Fully paved | Fully paved
& CenterC ‘F\l“V paved |Fully paved | Fully paved Fully paved Fully paved Partially paved |Fully paved |Fully paved
7 |centerp |Partially paveFully paved  Ily paved [Fully paved _Fully paved _[Fully paved _|Fully paved _|Fully paved
8 CenterE |Fully paved iy paved _ Fully paved Fully paved __[Fully paved _|Fully paved _|Fully paved
o Centerf ol paved  Fullypaved Fully paved |71 Fuly paved [Fuly paved _|Full paved
10 CenterG Fully paved Dirt road (Roug Fully paved Fully paved |Fully paved
11 Center H Fully paved Fully paved  |Fully paved  |Fully paved | Fully paved
12 Center | Not accessil Fully paved Not accessible  Fully paved Fully paved
13 Center) Fully paved Fully paved Fully paved Fully paved |Fully paved _|Fully paved
14 Centerk |Fully paved |Fully paved Fully paved _Fully paved Fully paved _ Fully paved _ Fully paved _[Fully paved _|Fully paved

FIGURE 8. road_condition sheet — input

4.4. Output file. The Excel output file has two sheets: routes and products to be
delivered. The routes sheet, in Figure 9, gives the recommended routes, including
the distances traveled, fuel and personnel costs, utilized vehicle and its condition,
utilized capacity per vehicle, dry and cold capacities, and the centers visited, giving
the time to leave each of the centers and the road condition between them. In
Figure 9, three routes are recommended. The summary description for all three
routes is shown at the top, and the details for the first route are also shown. The
products sheet, in Figure 10, gives the quantity of products distributed to each
center in a route, by dose or unit. It assigns a vehicle to the route and provides
the utilized capacity, dry and cold, by center. In Figure 10, the information of the
route is given at the top and the details of the products delivered at Center J, and
its utilized capacity are also shown.

|nou1|s DESCRIPTION:  ITest new input file
SUMMARY ROUTE AND PRODUCT DISTRIBUTION

|OUTPUT SHEET 1 OF 2

[TOTAL COST (FUEL+  [TOTAL DOSES
TOTAL DISTANCE (Km): |TOTAL FUEL COST: TOTAL PER DIEM COST: | . SEiNERED: ’m PER DOSE:
576] 4597.63| 600| 5197.63 5650] 0.92|
DETAILED ROUTE INFORMATION FOR 3 ROUTES
ROUTE: VEHICLE: VeHicLe conpmon: | PISTANCEFORROUTE |y o1 po RouTE: |PER PIEMCOSTFOR  |TOTAL DOSES
(km): ROUTE: DELIVERED:
Route 1 Landcruiser_3PL | Always Reliable 231 1843 84| 200| 4130|
TOTAL COST PER DOSE: OF OF CENTERS: :ME 'm_ LEAVETHE |2 6AD CONDITION:
VEHICLE (%): VEHICLE (%): ZIEE
0.49 18 360|Center B 8h0min Fully paved
Center ) 11 h 0 min Fully paved
Center C 14 h 45 min Fully paved
Center A 17 h 21 min Fully paved
Center B

FIGURE 9. routes sheet — output
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I
2

ROUTE DESCRIPTION: _ [Test new input file

i PRODUCTS DELIVERED
1
i ROUTE: Route 1
3 MEHICLE: Landcruiser_3PL
! STARTINGLOCATION: |Centers |
i
i CENTER: Center |

REFRIGERATED

UTILIZATION AT 21.14]
© HEALTH CENTER (%):

NON-REFRIGERATED

UTILIZATION AT 1.89)
1 HEALTH CENTER (%):

Ny [QUANTITY [DOSE OR

, PRODUCT: ns)

G.A Mensal (0-11 50|
3 meses
4 BCG (old policy| 20|
5 |vAP-10 30
6 VAP-20 20|
7 Penta-1 220
8 Penta-10 30|
9 PCVID 30|
0 |VAS :d
1 G.A. Mensal VAT MIF's 350,
2 |VAT Gravida Mensal 20|
3 Seringa 0.5 m| 600
4 Seringa 0.05 ml 250
5 Seringa Sml 30|

FIGURE 10. products sheet — output

4.5. Use cases. While developing the tool, VillageReach team members shared
questions or use cases that the Mozambican government users often asked. RoOT
was designed so that these questions can be easily answered. The questions include:

What if my main distribution center changes location?

What if a new vaccine is added for distribution?

What if a new facility is added to my current list?

What if one of my vehicles breaks down?

What if T add a new vehicle to my fleet?

What if the cold storage capacity at a health center is reduced?
What if new refrigerators arrive?

What if there is an outbreak and a need for immediate distribution?
What if a road is unavailable?

The user guide explains how to address each of these use cases. The need to
easily add a health center, a new vehicle, a new product, or change capacities
was instrumental in designing the input sheets. The Excel input file allows the
addition in one place that is replicated across sheets. When the user updates the
input file to answer one of these questions by changing vehicle, center, product,
or road information. The ”run description” in the parameters input sheet may be
used to describe the changes in parameters, or the question to be addressed. The
description is repeated in the output file to aid in linking input and output files.
The newly created input file should be saved with a new name representing the new
analysis.

5. MATHEMATICAL MODEL

The mathematical optimization model defining the problem is described in this
section. Table 3 presents the sets, decision variables and parameters of the model.
It is based on the preliminary work presented in Petroianu et al. (2019).
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In preliminary computational experiments, the number of products adversely
affected the computation time. To speed up computation, products are classified
as needing refrigeration (cold) or not needing refrigeration (dry) in a pre-processing
phase. By grouping products into only two categories, the number of variables in
the model is reduced and so is the computation time. This pre-processing, and
similar post-processing is invisible to the user. The inputs can allow any number
of products, and the outputs describe the products delivered along each route.

(1) min Wy Y Y e oy, £ W,y N 0N (70 ey,

ieC jeCveV i€C jeCveV
subject to
(2) Z Z Tijop — LTjivp — djp V] S C,p epP
i€eCveV

(3) SN wojupky <y WweV

jEC\{o} pEP,

(4) ST wojupky <l eV

Jj€C\{o} PEP

(5)  tjo—ti+ M1 —yi0) > hiju + W Vie O\{j},j € C\{o},v eV

(6) tiv + WL = Yiov) + Yijo(hijo + hjow) <1 VieC,jeCiveV
(7) SN wijo— Myojy <0 Yo eV
i€C jeC
(8) D> ijup = Maoju, <0 Yo eV,pe P
ieC jeC
(9) Zyijv_yjivzo VieCweV
ieC
(10) Yiin=0 VieCveV
(11) Yijo < a; Vie C\{j},jeCveV
(12) Myijo — Tijop >0 VielC,jeCiveV,peP
(13) Yijo €{0,1} VieC,jeCuveV
(14) ZTijop >0 VieC,jeCiveV,peP
(15) tiw>0 VieCuveV

The objective function (1) is a weighted sum of total transit time and total
sum of all penalties for chosen vehicles and roads during transit. In the objective
function, the exponential and the division by the means are used to normalize the
parameter values and consider them in the same scale. Constraints in (2) guarantee
that the center demand at each center is met. Constraints in (3) and in (4) limit the
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amount or quantity that vehicle v can carry of cold and dry products, respectively.
Constraints in (5) give the time sequence between two sequential health centers.
This means that if health center j follows i, the time that vehicle v leaves j has to be
greater than the time that it passed by ¢ plus the transit time between the centers
and the time for product drop off. Constraints in (6) guarantee that the vehicle will
always have time to return to the supply node o, while respecting the maximum
time for the route I. Constraints in (7) and in (8) ensure that each vehicle must
depart from the main health center o. In these constraints, M is a large number.
Constraints in (9) require that if a vehicle enters a health center, it has to leave
it, and constraints in (10) forbid a vehicle from returning to a center immediately
after leaving it. Constraints in (11) limit the routes to the available routes, and
constraints in (12) ensure that a vehicle v traverses arc (¢, 7) whenever products are

TABLE 3. Model notation - sets, parameters, and variables

Sets
Health centers — C i € C, o is the supply node
Vehicles — V veV
Refrigerated products —
P, peE P,
Non-refrigerated (dry)
products — Py pe Py
Products — P peP

Decision Variables

Yijv

binary variable: equals 1 if products are transported
from ¢ to j using vehicle v; and equals 0 otherwise
quantity of product p transported from 4 to j using vehicle v

iju

Lijup
tiv time that vehicle v leaves health center ¢
Parameters
W weight for minimizing the total transit time, in [0, 1] interval
Wy weight for minimizing the total penalties, W, =1 - W,
i average of all transit times, e = 35 ey 2o, jeo 2045, /|V] O
13 average of all vehicle penalties, ug =3 .5 64/|V|
Ly average of all road penalties, puy =3, i %”j/\CF
dip demand at health center ¢ for product p
hijo average transit time between ¢ and j using vehicle v
cy transportation capacity of vehicle v carrying cold products r
c? transportation capacity of vehicle v carrying dry products d
l maximum time for a route
kp volume of product p
aj route availability: equals 1 if route (4, 5) is available;
and equals 0 otherwise
Vij penalty for driving between i and j
B penalty for driving with vehicle v
w time for product drop off
M big number
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carried between them. Constraints in (13) - (15) define binary variables y;;, and
non-negative variables ;. and t;,,.

6. INDEXING METHOD

The indexing algorithm used in RoOT is a variation of VeRSA, presented in Zabin-
sky et al. (2020) and Zabinsky et al. (2019). Petroianu (2020) presents a discussion
of VeRSA and the variation used in this work.

To summarize, VeRSA uses an indexing method to quickly construct a feasible
solution, that has good performance.

The indexing method created for this problem is based on the mathematical
model objective functions and constraints. It is divided into two stages. The first
stage defines which vehicle will be used. The index value for choosing a vehicle is
calculated according to

(16) e Bolts 4 oCi/ier | o€o/tica 4 ovo/ i

where (, is the penalty for vehicle v, ], is the capacity of vehicle v for refrigerated
vaccines, c? is the capacity of vehicle v for dry goods, and 18, ey fhed, and i, are
the averages, respectively, to scale appropriately. The vehicle with the largest index
value is assigned a route next. The index prioritizes vehicles with lower penalties
and higher capacities and velocity. When all available vehicles are assigned a route,
in order of the index, then they may be assigned a second route.

After deciding the vehicle, its route is created using the index calculated in

(17) Wtefhijv/#h + Wpe*”j/"”

where 4 is the current center, j is the next center to visit, v is vehicle, h;;, is the
transit time from ¢ to j using vehicle v, ~;; is the penalty for road (i,7), 8, is
the vehicle penalty, and W; and W), are the weights for transit time and penalty
objective functions, respectively. The averages, up, 1y, and ug are used to scale
appropriately. The node with the highest index value is added to the route. This
index prioritizes closer centers and a lower penalty for road and vehicle.

The choices of vehicle and next node to add to the route have to respect vehicle
capacities, time limits, and road availability. These constraints are considered in a
feasibility check that is performed every time a new node or vehicle is added to the
route. The indexing algorithm constructs a feasible solution by assigning routes
until the delivery of products is complete.

The indexing algorithm allows multiple routes per vehicle, but it uses all avail-
able vehicles before reusing any of them. This constraint does not appear in the
mathematical model (1) — (15). However, in the numerical results, due to the size
of the problems, each vehicle was use at most one time. In addition, the vehicles
were similar. Therefore, the results were comparable.

To illustrate how to construct a feasible solution using the index, consider an
example with four health centers (o, a, b, ¢), where o is the supply node (i.e.,
depot). Figure 1la gives the transit time, h;j,, and the penalties, 7;;, between
centers. In this example, there is one vehicle with penalty, 3,, equal to one.

In Figure 11b, the index values calculated using (17) leaving node o and going to
a, b, ¢ are shown in the first row. The largest value, 0.49, indicates that node b is
visited next, as illustrated in Figure 11c. Then the index from b to a, c is calculated,
and the largest value of 0.46 indicates that node a is added to the route. Every
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a b c
o 0.69 0.49 0.67
a c
b 0.46 0.54

(B) Index calculation con-
(A) Transit time, hijv, and (penalties, ;;) sidering available arcs

@
© ®
0
= ®
© (D) b—a has the best (E) If there is still
() o—b has the best index of the remain- capacity and time, (F) The vehicle re-
index ing arcs the vehicle goes to ¢ turns to the depot o

FIGURE 11. Example of how to construct a feasible solution using
the index

time that a center is added, the index is calculated for all remaining centers, and
the feasible center with highest index is added to the route, as shown in Figure 11.

In the indexing algorithm presented in this paper, the algorithm traverses the
tree by calculating an incumbent solution for each initial branch of the tree, a depth
evaluation of the branch. Then it creates an elite set with 12% of the incumbent
solutions. This elite set is divided into two blocks of solutions. From its total,
50% come from the best incumbent solutions and 50% are solutions considering
the largest solution uncertainty intervals. The uncertainty interval is the local
best solution minus local lower bound. Each solution of this elite set represents a
complete branch that will be explored in search of better solution and will help to
traverse the tree. The global lower bound of the problem is defined as a minimum
spanning tree in which the cost is related to the index in (17). The local lower
bound is calculated exploring the current branch up to the its current level.

This indexing algorithm presents good results in comparison to the solvers for
the same mathematical model, finding the optimal solution promptly for small
datasets, and obtaining better optimality gaps for larger sets, as is demonstrated
in Section 7.

7. NUMERICAL RESULTS

In this section, three realistic datasets with information from Mozambican provinces
were used as inputs to perform computational experiments. District A has 11 health
centers, 13 products, and 1 vehicle. District B has 16 health centers, 13 products,
and 2 vehicles. District C has 13 health centers, 12 products, and 6 vehicles, as
shown in Table 4. The three datasets have the same penalties for all vehicles and
roads. As mentioned in Section 4, the products are grouped into two types: re-
frigerated and non-refrigerated. Therefore, the models consider only two type of
products while optimizing the routes. It is valid for all datasets.
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TABLE 4. Size of test datasets

Number Number Number Number
Dataset of centers of vehicles of variables of constraints
District A-small 8 1 200 1,165
District B-small 8 2 400 2,330
District C-small 8 3 600 3,495
District A 11 1 374 2,260
District B 16 2 1,568 9,766
District C 13 6 3,120 19,140
50 centers simple 50 5 24,200 157,025
50 centers modified 50 5 24,200 157,025

The computational experiments compared the runtime and solution found by
solving the same MIP by Gurobi 8.0.1, CBC, GLPK, and RoOT. All the tests were
run on a Dell XPS13 computer, Intel CORE i7, with 16 GB of RAM. The weighted
objective function used W; = W, = 0.5 for all tests.

Due to the problem sizes, optimality can be found in less than four hours only for
District A. Therefore, three smaller datasets were created to check if the indexing
algorithm could discover an optimal solution that was confirmed using Gurobi. The
smaller data sets are based on a subset of centers in each district, called District A-
small, District B-small, and District C-small. The size of each dataset is given in
Table 4.

Two large test datasets with 50 health centers and 5 vehicles were also created
to compare the solvers on large instances. The first large instance, called 50 centers
simple, has identical vehicles and the penalties for all the road are the same. The
second instance, called 50 centers modified, has five different vehicles and differ-
ent penalties for the roads. All the instances are available on-line, see Petroianu
(2019a).

For the small datasets, Gurobi was able to solve the MIP to optimality, as shown
in Table 5. The indexing algorithm in RoOT found the same optimal solutions
quickly for the three small data sets, but did not confirm optimality within 30
minutes of runtime. The open-source solver CBC also discovered the same optimal
solutions, although taking more time, and did not confirm optimality within 30
minutes of runtime. The other open-source solver GLPK was able to discover the
same optimal solutions for two of the three datasets, but reported an infeasible
solution as “optimal” for the District A-small dataset, its solution does not visit
one of the health centers.

The realistic datasets (District A, District B, and District C) were tested running
the solvers for 30 minutes (i.e., 1800 seconds). Figures 12 — 14 provide plots of
solution versus runtime (in seconds) for District A, District B, and District C,
respectively. Note that the runtime is plotted in logarithmic scale. An end-user
typically expects a near-optimal solution in less than two minutes (i.e., 120 seconds).
Table 6 summarizes the best solution found in 30 minutes, with its lower bound,
to provide the optimality gap.

Gurobi found the optimal solution for District A, and RoOT had a performance
similar to the CBC solver for that instance. For dataset District B, Gurobi, CBC,
and RoOT had similar performances running for 30 minutes. For dataset District
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weighted obj. function

C,

TABLE 5. Computational comparison for the small datasets

Optimal MIP solution time (s)
solution Gurobi® CBC?® GLPK® RoOT? (s)

District A-small 5.90 3.48 13.23 4.40¢ 1.02
District B-small 6.69 4.31 100.61 60.00 1.88
District C-small 6.20 12.35 13.23  540.20 0.90

¢ Time for optimal solution.

b Time to first discover the optimal solution.

¢ GLPK gave a different solution in comparison to the other 3 solvers: 4.63.
Its solution does not visit one of the health centers.

24

— RoOT --- GUROBI - CBC — = GLPK

14
!

— ReOT --- GUROBI - CBC == GLPK

16 20

6 8 10
1
weighted obj. function

12

T T T T
1 10 100 1000 1 10 100 1000

time (s) fime (s)

FIGURE 12. Solution FIGURE 13. Solution
comparison: District A comparison: District B
(GLPK gave an infea-

sible solution smaller

weighted objective func-

tion than the optimal

calculated by Gurobi)

— R0OT  --- GUROBI ' CBG == GLPK

weighted obj. function
9 11 13 15

1 10 100 1000

time (s)

FIGURE 14. Solution
comparison: District C

containing 6 vehicles, RoOT had better performance than all solvers, with small
improvement over Gurobi.
However, as discussed in Section 3.4, vehicle routing problems are difficult to
solve for large instances. To test the performance of RoOT in this situation, we
created two test datasets with 50 centers and five vehicles. The distances are from
the instance belgium-road-km-d2-n50-k10 (Smet, 2017).

19



TABLE 6. Computational comparison for five datasets

District A District B District C 50 centers simple 50 centers modified
Best Lower Best Lower Best Lower Best Lower Best Lower
solution bound solution bound solution bound solution bound solution bound
RoOT 8.57 6.16 14.24 6.11 10.23 2.93 40.46 21.36 42.73 16.03
Gurobi  7.93 7.93 14.06 10.11 10.24 8.03 40.24 24.26 44.81 21.05
CBC 8.57 4.69 14.40 2.47 11.05 1.29 - - - -

GLPK  “7.30 4.81 16.13 7.93 12.34 1.07 - - - -

¢ GLPK gave a solution smaller than the optimal calculated by Gurobi

— RoO0T --- GUROBI — RoOT --- GUROBI

48

44
1

weighted obj. function
40 45 50 55 80
weighted obj. function

| ey
B T T T g B T T T
10 100 1000 10 100 1000
time (s) fime (s)
FIGURE 15. Solution FIGURE 16. Solution
comparison: 50 centers comparison: 50 centers
simple modified

The first dataset had five identical vehicles with the same penalty values, and all
the roads also had the same penalty values. Figure 15 shows solver performances.
CBC and GLPK could not find a feasible solution in 30 minutes. RoOT, found a
feasible solution earlier than Gurobi, and Gurobi only reached the RoOT solution
after 8.33 minutes (i.e., 500 seconds). However, Gurobi improved RoOT’s solution
and had a better solution at the end of 30 minutes. The difference in Gurobi’s
solution and RoOT’s solution at 30 minutes was not significant.

The second dataset had five different vehicles, with different capacities and penal-
ties. Moreover, the penalties for the roads were also different. Again CBC and
GLPK could not find a solution in 30 minutes. RoOT found a feasible solution and
converged earlier than Gurobi, and by the end of the 30 minutes, Gurobi had not
reached the RoOT solution.

8. CONCLUSION

The main goal of this project is to create an easy-to-use routing tool that meets
the needs of the users. The interactions between team members from the Univer-
sity of Washington, VillageReach, and the Mozambican Ministry of Health were
essential to reach this objective. Through many discussions and meetings, we de-
veloped the tool presented in this paper. RoOT is available on GitHub in English
and Portuguese (Petroianu, 2019a;b) for other users from NGOs, government, and
academia. MoH users were trained to use the tool, and feedback received was
favorable.

RoOT gives good solutions in a timely manner. The final users do not have time
or resources available to run an optimization model for hours or days to find the
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optimal solution. They want a good solution in one or two minutes, and RoOT is
capable of that, as shown in this paper. Moreover, RoOT obtained good solutions
within two minutes on the 50 center datasets. Scalability and speed are important
factors for the users.

RoOT can be used in different situations, such as routine operations, emergen-
cies, in pandemics, such as COVID-19, or to evaluate changes in the situation (e.g.,
new vehicles or centers). In addition, it can be used for other medical supplies
distribution, not only vaccines.

9. FUTURE WORK

Considerations for future route optimization versions of RoOT include multiple
day routes, with mixed transportation modes (e.g., land vehicles and boats) and is-
land deliveries. This will require discussion on how intermediary storage of vaccines
may be handled over multiple days. There is a risk of breakage and temperature
range violation when unpacking and repacking vaccines in mid-route for interme-
diary refrigeration. Mixed modes also present issues of coordination of timing as
well as capacity issues.

One of the main challenges in preparing the data for the tool is to define the
distance matrix. There is an opportunity to develop another tool that uses informa-
tion from mapping and map APIs to populate the matrix, using names of locations,
postal codes, or geographic coordinates.

The computational experience with RoOT has provided insights and ideas for
future improvements. We will continue improving the indexing algorithm used in
RoOT, to find better solutions faster and reducing the optimality gap with a tighter
lower bound. We intend to test RoOT to evaluate its performance on more complex
datasets with hundreds of centers.
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