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Abstract. Computers and Intractability: A Guide to the Theory of NP-
Completeness, by Michael R. Garey and David S. Johnson, was published 40

years ago (1979). Despite its age, it is unanimously considered by many in

the computational complexity community as its most important book. NP-
completeness is perhaps the single most important concept to come out of

theoretical computer science. The book was written in the late 1970s, when

problems solvable in polynomial time were linked to the concepts of efficiently
solvable and tractability, and the complexity class NP was defined to capture

the concept of good characterization. Besides his contributions to the theory

of NP-completeness, David S. Johnson also made important contributions to
approximation algorithms and the experimental analysis of algorithms. This

paper summarizes many of Johnson’s contributions to these areas and is a
homage to his memory.

1. Johnson’s contributions to NP-completeness

Cook (1971) and Levin (1973) in the early 1970s proved the seminal theorem for
the theory of NP-completeness establishing that Satisfiability is NP-complete. The
subsequent seminal paper by Karp (1972) establishing 21 NP-complete problems
was the first to use the terms P and NP, although polynomial complete was the
name used at the time for the hard problems.

To mark the 40th anniversary in 2012 of the publication of the Karp’s pa-
per, where the wide applicability of the NP-completeness concept was established,
David S. Johnson wrote the paper A Brief History of NP-Completeness (Johnson,
2012). The year 2012 also marked the 100th birthday of Alan Turing, whose Tur-
ing machine is the basic model for computation used to define the classes P and
NP (Haeusler, 2012).

The early involvement of David S. Johnson with NP-completeness mainly con-
cerned the methods for coping with hard problems, by designing and analyzing
approximation algorithms. David S. Johnson met Michael R. Garey at Bell Lab-
oratories in Murray Hill, New Jersey, and one of their first collaborations was to
answer a letter by Donald Knuth seeking a better name for polynomial complete.
Garey and Johnson proposed the term NP-complete. For a detailed account by
Knuth about the choice of the name NP-complete, we refer to Knuth (1974).

The popularity of the NP-completeness concept and of its guidebook increased
when the P versus NP problem was selected by the Clay Mathematics Institute as
one of the seven Millennium Problems to motivate research on important classic
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questions that have resisted solution over the years. The P versus NP problem
is considered a central problem in theoretical computer science, and aims to clas-
sify the possible existence of efficient solutions to combinatorial and optimization
problems (Fortnow, 2009).

Besides complexity theory, Johnson made remarkable contributions to approx-
imation algorithms, worst-case analysis of algorithms, and local search methods.
Johnson was also an enthusiast of experimental algorithms. Over several decades,
he made many contributions to this area, too. He wrote several papers, including a
guide with ten principles for experimental analysis of algorithms (Johnson, 2002).
He also inspired the creation of and organized several DIMACS Implementation
Challenges that brought together researchers from all over the world to investigate
the best algorithms to solve different variants of the problems focused on in each
challenge. Johnson organized challenges on network flows and matching (Johnson
and McGeoch, 1993), maximum clique, graph coloring, and satisfiability (Johnson
and Trick, 1996), priority queues and dictionaries (Goldwasser et al., 2002) and near
neighbor searches (Goldwasser et al., 2002), semidefinite and related optimization
problems (Johnson et al., 2000), traveling salesman problem (Johnson et al., 2001),
shortest path problem (Demetrescu et al., 2009), and Steiner tree problem (Johnson
et al., 2014).

This paper aims to summarize Johnson’s contributions to NP-completeness and
experimental analysis of algorithms. Moreover, Johnson had many other qualities,
and was a very kind and sensible person. The last section of this paper shares a
personal view of David S. Johnson.

1.1. A Brazilian perspective on the 40th anniversary.

Complexity-separating graph classes. In the 16th edition of his The NP-complete-
ness Column: An Ongoing Guide (Johnson, 1985), Johnson focused on graph re-
strictions and their effect, with emphasis on the restrictions to graph classes and
how they affect the complexity of various NP-hard problems. Graph classes were
selected because of their broad algorithmic significance. The presentation consisted
of a summary table with 30 rows containing the selected classes of graphs and 11
columns. The first column was devoted to the complexity of determining whether
a given graph is in the specified class followed by ten of the most famous NP-
complete graph problems. The entry for a class and a problem was the complexity
of the problem restricted to that class of graphs — polynomial-time solvable or NP-
complete, if known. The goal was to identify interesting problems and interesting
graph classes establishing the concept of complexity separation.

The chosen ten famous graph problems were: independent set, clique, partition
into cliques, chromatic number, chromatic index, Hamiltonian circuit, dominating
set, simple (unweighted) max cut, (unweighted) Steiner tree in graphs, and graph
isomorphism. The first nine problems were at the time known to be NP-complete
for general graphs; the complexity of graph isomorphism for general graphs is still
a long-standing open problem, one of twelve open problems highlighted at the end
of the NP-completeness guide by Garey and Johnson (1979). The table revealed
among its 330 entries the existence of a substantial collection of 71 open problems
classified from entertaining puzzles as P? or O? to may well be hard or are famous
as O or O! problems. It is remarkable that only one entry in the entire table
deserved a famous open problem O! entry, the recognition for perfect graphs, and
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just two entries deserved a may well be hard problem O entry, edge COLORING of
planar graphs and Hamiltonian circuit of permutation graphs. The two problems
with most open entries were edge coloring and maxcut, and there are today just a
few updates with respect to those two problems. At that time, the edge coloring
problem had 19 of its 30 entries classified as O?, which meant apparently open but
possibly easy to resolve, and 14 of those O? entries remain open today.

The choice of the ten famous graph problems and of the 30 significant graph
classes reflected the importance of the famous open problem, the recognition for
perfect graphs, for which the special O! entry was given. A graph is perfect if for
every induced subgraph the chromatic number equals the maximum clique size. In
the first edition of his The NP-Completeness Column: An Ongoing Guide (Johnson,
1981), Johnson discussed the progress that had been made on the twelve open
problems presented at the end of the NP-completeness guide (Garey and Johnson,
1979). Six of those open problems had been resolved, and the split was even:
three had been shown to be solvable in polynomial time and three had been proved
NP-complete. It is remarkable that today we know that ten of those twelve open
problems are resolved, and that the split is still even. Johnson concluded the first
edition of the NP-completeness column by presenting as the problem of the month,
the recognition for perfect graphs, and explained that just in 1981 the class of
imperfect graphs was shown to be in NP, equivalently the class of perfect graphs
was shown to be in co-NP.

Only one entry among the 330 entries in the entire table was due to a Brazilian
author, Jayme Luiz Szwarcfiter, who established in 1982 the NP-completeness of
Hamiltonian circuit for grids (Itai et al., 1982). Today, there are two additional
entries that are resolved by Brazilian authors. graph isomorphism restricted to
proper circular arc graphs admits a linear time algorithm (Lin et al., 2008), whereas
max cut restricted to strongly chordal graphs is NP-complete (Sucupira et al., 2013).

2. Towards experimental analysis of algorithms

Johnson started his career as a “pure theoretician.” Before his contributions to
theory of NP-completeness, he worked with approximation algorithms, polynomial
algorithms with provable guarantees on the distance of the returned solution to
the optimum. An example of this work was his PhD thesis (Johnson, 1973), titled
Near-Optimal Bin Packing Algorithms, which was defended in 1973 at the MIT
Mathematics Department, advised by Michael J. Fischer. The main result of the
thesis was a proof that the First Fit Decreasing heuristic for the bin packing problem
never returns a solution that uses more than (11 OPT/9) + 4 bins, where OPT is
the optimal number of bins. Johnson also proposed approximation algorithms for
other optimization problems, such as graph coloring (Garey and Johnson, 1976) and
some scheduling problems (Garey et al., 1978). The NP-completeness guide (Garey
and Johnson, 1979) has a chapter on “Coping with NP-Complete Problems” in
practice. Although heuristics are briefly mentioned, most of the chapter describes
approximation algorithms.

In the late 1970s and early 1980s, access to computers became more widespread
and practitioners could apply their algorithms to tackle real problems. It became
clear that, despite their theoretical importance, approximation algorithms were not
the most practical way of handling typical NP-complete problems. The following
issues were raised:
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(1) Few NP-complete problems were found to be like the bin packing, having
approximation algorithms with really tight guarantees of quality. In most
cases the obtainable approximation factors were larger. For example, the
best known approximation factor for the metric traveling salesman problem
(TSP) is 1.5 (Christofides, 1976), the best known approximation factor for
the vertex cover problem is 2 (the approximation bounds for those two
problems could not be improved since then). In fact, there are several NP-
complete problems, like the TSP with general costs, that were proved to
not have constant factor approximations unless P = NP .

(2) The approximation factors are worst-case guarantees. For most instances
the solutions obtained by approximation algorithms were significantly closer
to the optimal solutions. However, it was realized that heuristics based on
techniques like local search almost always obtained even better solutions.

Around the same time, a very prominent case highlighted another limitation of
the classic theoretical study of algorithms, based in worst-case asymptotic analysis.
The highly popular simplex algorithm for linear programming (Dantzig, 1963),
proposed in 1947 by George B. Dantzig, has a very good practical performance.
Yet, Klee and Minty (1972) proved that a variant of the simplex algorithm, as
formulated by Dantzig, can take exponential time in some instances. Khachiyan
(1979) created much excitement in the mathematical world by discovering the first
polynomial algorithm for linear programming. Part of that excitement subsided in
the following years, as practitioners realized that his Ellipsoid Algorithm performed
very poorly in practice. However, the theoreticians were vindicated to some extent
when the polynomial interior-point algorithms for linear programming, the first
algorithm of that family was proposed in Karmarkar (1984), were shown to have
a good practical performance (Adler et al., 1989), being better than the simplex
algorithm in some cases.

It seems clear that Johnson was influenced by that zeitgeist and wished to possess
more accurate tools for assessing the practical performance of algorithms. His first
incursion in the subject was still theoretical: an analytical probabilistic study of the
asymptotic expected behavior of First Fit and First Fit Decreasing algorithms for
bin packing, assuming that bin size is 1 and item weights are chosen uniformly from
the interval (0, u], u ≤ 1 (Bentley et al., 1984). The study reached quite interesting
conclusions, indicating that both algorithms were likely to obtain solutions very
close to the optimal. Nevertheless, Johnson would later recognize two limitations
of probabilistic analysis: i) it can only be applied to relatively simple algorithms
and ii) it should assume that instance data follow certain probability distributions,
which can be simply unrealistic.

A second incursion was also theoretical. Given that many of the most success-
ful heuristics for NP-complete problems were based on local search, the studies in
Johnson et al. (1985) and Johnson et al. (1988) tried to assess the computational
complexity of reaching a local optimal solution with respect to a given neighbor-
hood. For example, the most classical neighborhoods for the TSP are 2-OPT,
3-OPT and Lin-Kernighan. For all of these neighborhoods it is not known whether
it is possible to find a local optimal in polynomial time. Johnson et al. define
the class PLS (Polynomial Local Search) as being composed of the neighborhoods
where it is possible to check local optimality in polynomial time. All the three
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previously mentioned TSP neighborhoods are clearly in PLS, as are most neighbor-
hoods used in practice. They then proved that the Kernigham-Lin neighborhood
for the graph partitioning problem is PLS -complete, meaning that if it is possible to
find a local optima for that neighborhood in polynomial time then it is also possible
to find local optima for all neighborhoods in PLS in polynomial time. While that
result represented a technical feat, the study somehow failed in its ultimate goal of
providing a fruitful theoretical framework (akin to the theory of NP-completeness)
for classifying neighborhoods as easy or hard: (1) it is very difficult to determine
whether a given neighborhood is PLS -complete, in particular, the authors could
not determine the status of the classic TSP neighborhoods: (2) in practice, it is
usually very easy to find local optimal solutions, even for PLS -complete neighbor-
hoods. Actually, the real issue for heuristics based on local search is not finding
any local optimal solution, it is escaping from the attraction of local optima that
are not near-optimal global solutions.

The late 1980s witnessed the flourishing of metaheuristics, techniques that are
aimed at guiding local searches in their exploration of the solution space. Classic
metaheuristics like genetic algorithms (Holland, 1975), simulated annealing (Kirk-
patrick et al., 1983), tabu search (Glover, 1986), and GRASP (Feo and Resende,
1989) started to be broadly applied to many optimization problems. At that mo-
ment, Johnson convinced himself that: (1) heuristics are indeed among the best
known ways of coping with NP-complete problems in practice; (2) since the known
theoretical tools have a limited capacity for evaluating algorithms (specially heuris-
tics), extensive computational experiments would be necessary. The paper that
marks his debut in the area of Experimental Analysis of Algorithms (EAA) is an
in-depth study of simulated annealing applied to graph partitioning (Johnson et al.,
1989).

Johnson joined EAA with enthusiasm. Nevertheless, he was not pleased with
some of the work in the area, for what he perceived as lacking scientific rigor.
Johnson started then a lifelong struggle for promoting EAA and for raising its
standards.

2.1. DIMACS implementation challenges. In Johnson’s own words: “The DI-
MACS Implementation Challenges address questions of determining realistic algo-
rithm performance where worst case analysis is overly pessimistic and probabilistic
models are too unrealistic: experimentation can provide guides to realistic algorithm
performance where (theoretical) analysis fails.” Johnson conceived the DIMACS
Implementation Challenges and was directly involved with the organization of its
first 11 editions.

In each challenge, a problem or set of problems are defined, a large and diverse
set of instances collected, and algorithms are tested under the same conditions. The
objective of each challenge is to establish the state-of-the-art solution methods for
the problem(s). Below is a list of the 11 DIMACS Implementation Challenges and
the year each one was run:

(1) 1991: Network Flows and Matching
(2) 1993: Maximum Clique, Graph Coloring, and Satisfability
(3) 1994: Effective Parallel Algorithms for Combinatorial Problems
(4) 1995: Fragment Assembly and Genome Rearrangements
(5) 1996: Priority Queues, Dictionaries, and Multi-Dimensional Point Sets
(6) 1999: Near Neighbor Searches
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(7) 2000: Semidefinite and Related Optimization Problems
(8) 2001: The Traveling Salesman Problem
(9) 2006: The Shortest Path Problem

(10) 2012: Graph Partitioning and Graph Clustering
(11) 2014: Steiner Tree Problems

A DIMACS Implementation Challenge usually has a lasting effect on the research
of its target problems, establishing rigorous standards for the evaluation of future
algorithms.

The 12th DIMACS Implementation Challenge on Vehicle Routing Problems will
be the first without Johnson’s participation. It is scheduled to be held in 2021,
details can be found at dimacs.rutgers.edu/events/details?eID=1090.

2.2. A theoretician’s guide to the experimental analysis of algorithms.
After the Challenge on TSP, maybe the problem from the DIMACS Implementation
Challenges most dear to Johnson, he wrote two chapters, Experimental Analysis of
Heuristics for the STSP and Experimental Analysis of Heuristics for the ATSP in
a TSP book (Gutin and Punnen, 2002). Those chapters are exemplary works on
EAA.

Soon after writing these two book chapters Johnson published A Theoretician’s
Guide to the Experimental Analysis of Algorithms, a summary of 15 years of re-
flections on how EAA should be performed and how results should be reported
(Johnson, 2002). In our view, the guide is still a mandatory reading for those who
work in the area. It starts by motivating EAA, observing that “theoretical results
cannot tell the fully story about real-world algorithmic performance.” The guide has
a section for each of the ten principles recommended to be observed by researchers
before writing experimental papers:

(1) Perform newsworthy experiments.
(2) Tie your paper to the literature.
(3) Use instance testbeds that can support general conclusions.
(4) Use efficient and effective experimental designs.
(5) Use reasonably efficient implementations.
(6) Ensure reproducibility.
(7) Ensure comparability.
(8) Report the full story.
(9) Draw well-justified conclusions and look for explanations.

(10) Present your data in informative ways.

During the course of the discussions on the principles, Johnson pointed out pitfalls
that should be avoided and also what he called “pet peeves” (flaws that he found
particularly annoying).

3. The person David S. Johnson

Johnson’s contributions to science were publicly recognized in diverse occasions.
In 1995 he became an ACM Fellow for his fundamental contributions to the theories
of approximation algorithms and computational complexity, and for outstanding
service to ACM. In 1997 he received the inaugural SIGACT Distinguished Service
Prize. In 2010 he received the Knuth Prize for outstanding contributions to the
foundations of computer science. In 2016 he was elected to the National Academy



THE GUIDE TO NP-COMPLETENESS IS 40 YEARS OLD 7

of Engineering for his contributions to the theory and practice of optimization and
approximation algorithms.

Johnson was a perfectionist when it came to writing. We would spend a great
deal of time polishing and crafting his writings. His reviews were always done with
care and detail. For example, when reviewing “proofs” of “P = NP” Johnson would
not simply discard the paper but rather would try to show the author gaps in their
“proof”.

Johnson was strongly connected with his work. He insisted on using his middle
initial (“S” for “Stifler”) to be uniquely identifiable. After completing his PhD at
MIT, Johnson was hired to work at Bell Laboratories (later AT&T Labs) in New
Jersey, where he worked from 1973 until his retirement in 2013. He was head of
the Mathematical Foundations of Computing Department at Bell Labs and of the
Algorithms and Optimization Research Department at AT&T Labs Research from
1988 to 2013. When Johnson drove to work, he would always park in the same spot.
In the summers he would often bike to work. At noon every day, Johnson would
go from door to door down his hallway inviting people with a friendly “Lunch?”.
Even when on vacation in New Jersey Johnson would often come to have lunch at
work with his colleagues. At least during his last 25 years at AT&T, Johnson would
always eat the same meal at lunch, a salad with dressing on the side and a coke.
Every day at 4 PM Johnson would always have a second coke. Johnson and his wife
Dorothy Wilson organized an annual picnic at their home in Madison, New Jersey,
hosting current and former colleagues of Johnson’s, summer interns and visitors,
as well as their family members. Over the many picnics, his friends and colleagues
saw Jack Johnson, son of Johnson and Dorothy, grow up.

David, as friends and colleagues used to address him, also enjoyed many activities
outside of work. He used to run, including marathons. He was a Green Bay Packers
fan. He had a collection of over 5,000 CDs and many DVDs and Blu-rays. Johnson
was an avid reader of science fiction. He had a complete collection of Mad Magazine.
Many of the items David collected over the years are now at the Library of Drew
University in Madison, New Jersey (Drew University, 2020).

David is and will always be deeply missed.
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